Chapter 18: Problem 2549
The shape of the graph \(\ln 1 \rightarrow t\) is (A) straight Line (B) Parabolic curve (C) Hyperbole curve (D) random shape curve
Chapter 18: Problem 2549
The shape of the graph \(\ln 1 \rightarrow t\) is (A) straight Line (B) Parabolic curve (C) Hyperbole curve (D) random shape curve
All the tools & learning materials you need for study success - in one app.
Get started for freeA nucleus with \(\mathrm{Z}=92\) emits the following sequence $\alpha, \alpha, \beta^{-}\( \)\beta^{-}, \alpha, \alpha, \alpha, \alpha, \beta^{-}, \beta^{-}, \alpha, \beta^{+}, \beta^{+}, \alpha\( The \)\mathrm{Z}$ of the resulting nucleus is (A) 76 (B) 78 (C) 74 (D) 82
Match column I and II and chose correct Answer form the given below. (a) Nuclear fusion (p) converts some matter into energy (b) Nuclear fission (q) generally Possible for nuclei with low atomic number (c) \(\beta\) decay (r) generally Possible for nuclei with high atomic number (d) Exothermic nuclear (s) Essentially Proceeds by weak reaction nuclear force(c) (A) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{q}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$
In Rutherford experiment, the number of Particles scattered at \(90^{\circ}\) angle are 28 Per min. then the number of Particles at the angle \(120^{\circ}\) in Per min will be (A) 25 (B) \(12.0\) (C) 50 (D) 112
A radioactive sample has \(\mathrm{n}_{0}\) active atom at \(\mathrm{t}=\mathrm{o}\), at the rate of disintegration at any time is \(\mathrm{R}\) and the number of atom is \(\mathrm{N}\), then ratio. $(\mathrm{R} / \mathrm{N})\( varies with time \)(\mathrm{t})$ as.
A nucleus \({ }_{n} X^{\mathrm{m}}\) emist one \(\alpha\) - Particle and two \(\beta\) -Particle. The resulting nucleus is (A) \(_{n-2} Y^{m-4}\) (B) \(_{\mathrm{n}} \mathrm{Y}^{\mathrm{m}-6}\) (C) \(\mathrm{n} \mathrm{Y}^{\mathrm{m}-4}\) (D) \(_{n-4} Y^{m-6}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.