Chapter 18: Problem 2551
The Probability of survival of a radioactive nucleus for one mean life time is (A) \(1-(1 / \mathrm{e}) \mathrm{S}\) (B) \((1 / \mathrm{e})\) (C) \((2 / \mathrm{e})\) (D) \((3 / \mathrm{e})\)
Chapter 18: Problem 2551
The Probability of survival of a radioactive nucleus for one mean life time is (A) \(1-(1 / \mathrm{e}) \mathrm{S}\) (B) \((1 / \mathrm{e})\) (C) \((2 / \mathrm{e})\) (D) \((3 / \mathrm{e})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the binding energy Per nucleon in \({ }_{3}^{7} \mathrm{Li}\) and ${ }^{4}{ }_{2}\( He nuclear is \)5.6 \mathrm{MeV}\( and \)7.06 \mathrm{MeV}$ respectively, then in the reaction $\mathrm{P}+{ }_{3} \mathrm{Li} \rightarrow 2\left({ }_{2}^{4} \mathrm{He}\right)$ (P here retrent Proton) energy of Proton must be (A) \(1.46 \mathrm{MeV}\) (B) \(39.2 \mathrm{MeV}\) (C) \(17.28 \mathrm{MeV}\) (D) \(28.24 \mathrm{MeV}\)
what Percent of original radioactive substance is left after 5 half life time (A) \(3 \%\) (B) \(5 \%\) (C) \(6 \%\) (D) \(12 \%\)
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
The half life time of a radioactive elements of \(\mathrm{x}\) is the same as the mean life of another radioactive element \(\mathrm{y}\). Initially they have same number of atoms, then (A) \(\mathrm{y}\) will decay faster then \(\mathrm{x}\) (B) \(\mathrm{x}\) will decay faster then \(\mathrm{y}\) (C) \(\mathrm{x}\) and \(\mathrm{y}\) will decay at the same rate at all time (D) \(\mathrm{x}\) and \(\mathrm{y}\) will decay at the same rate initially.
Complete the reaction ${ }_{0} \mathrm{n}^{1}+{ }_{92} \mathrm{U}^{235} \rightarrow{ }_{56} \mathrm{Ba}^{144}+{ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}+3\left({ }_{0} \mathrm{n}^{1}\right)$ (A) \(_{36} \mathrm{Kr}^{90}\) (B) \(_{36} \mathrm{Kr}^{89}\) (C) \(_{36} \mathrm{Kr}^{91}\) (D) \(_{36} \mathrm{Kr}^{92}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.