Chapter 2: Problem 167
Mechanics is a branch of physics. This branch is ... (A) Kinematics without dynamics (B) dynamics without Kinematics (C) Kinematics and dynamics (D) Kinematics or dynamics
Chapter 2: Problem 167
Mechanics is a branch of physics. This branch is ... (A) Kinematics without dynamics (B) dynamics without Kinematics (C) Kinematics and dynamics (D) Kinematics or dynamics
All the tools & learning materials you need for study success - in one app.
Get started for freeThe distance travelled by a particle is given by $\mathrm{s}=3+2 \mathrm{t}+5 \mathrm{t}^{2}\( The initial velocity of the particle is \)\ldots$ (A) 2 unit (B) 3 unit (C) 10 unit (D) 5 unit
A particle is moving in a xy plane with \(\mathrm{y}=2 \mathrm{x}\) and \(\mathrm{Vx}=2-\mathrm{t}\). Find \(\mathrm{Vy}\) at time \(\mathrm{t}=3\) second. (A) \(2 \mathrm{~ms}^{-1}\) (B) \(-3 \mathrm{~ms}^{-1}\) (C) \(+3 \mathrm{~ms}^{-1}\) (D) \(-2 \mathrm{~ms}^{-1}\)
Which from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$
A goods train is moving with constant acceleration. When engine passes through a signal its speed is U. Midpoint of the train passes the signal with speed \(\mathrm{V}\). What will be the speed of the last wagon? (B) \(\left.\sqrt{[}\left(\mathrm{V}^{2}-\mathrm{U}^{2}\right) / 2\right]\) (D) \(\sqrt{[}\left(2 \mathrm{~V}^{2}-\mathrm{U}^{2}\right)\)
The area under acceleration versus time graph for any time interval represents... (A) Initial velocity (B) final velocity (C) change in velocity in the time interval (D) Distance covered by the particle
What do you think about this solution?
We value your feedback to improve our textbook solutions.