Chapter 2: Problem 168
To locate the position of the particle we need ... (A) a frame of reference (B) direction of the particle (C) size of the particle (D) mass of the particle
Chapter 2: Problem 168
To locate the position of the particle we need ... (A) a frame of reference (B) direction of the particle (C) size of the particle (D) mass of the particle
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{A}=+\mathrm{i} \wedge+\mathrm{j} \wedge-2 \mathrm{k} \wedge\) and $\mathrm{B} \overrightarrow{\mathrm{i}} \wedge-\mathrm{j} \wedge+\mathrm{k} \wedge$ Find the unit vector in direction of \(\mathrm{A} \rightarrow \times \mathrm{B}^{\rightarrow}\) (A) $[1 / \sqrt{(23)}](-\mathrm{i} \wedge-5 \mathrm{j} \wedge-2 \mathrm{k} \wedge)$ (B) $[1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 \mathrm{j} \wedge-3 \mathrm{k} \wedge)$ (C) \([1 / \sqrt{(29})](-i \wedge-5 j \wedge-3 k \wedge)\) (D) \([1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 j \wedge-3 \mathrm{k} \wedge)\)
A particle is thrown in upward direction with initial velocity of $60 \mathrm{~m} / \mathrm{s}$. Find average speed and average velocity after 10 seconds. \(\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]\) (A) \(26 \mathrm{~ms}^{-1}, 16 \mathrm{~ms}^{-1}\) (B) \(26 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (C) \(20 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (D) \(15 \mathrm{~ms}^{-1}, 25 \mathrm{~ms}^{-1}\)
Comprehensions type questions. A particle is moving in a circle of radius \(R\) with constant speed. The time period of the particle is \(\mathrm{T}\) Now after time \(\mathrm{t}=(\mathrm{T} / 6)\) Range of a projectile is \(R\) and maximum height is \(\mathrm{H}\). Find the area covered by the path of the projectile and horizontal line. (A) \((2 / 3) \mathrm{RH}\) (B) \((5 / 3) \mathrm{RH}\) (C) \((3 / 5) \mathrm{RH}\) (D) \((6 / 5) \mathrm{RH}\)
If \(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}=0\) then (A) \(\left|\mathrm{A}^{\rightarrow}\right|\) must be zero (B) \(\mathrm{B}^{\rightarrow} \mid\) must be zero (C) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=0\) (D) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=(\pi / 2)\)
A particle moves in one direction with acceleration \(2 \mathrm{~ms}^{-2}\) and initial velocity \(3 \mathrm{~ms}^{-1}\).After what time its displacement will be \(10 \mathrm{~m}\) ? (A) \(1 \mathrm{~s}\) (B) \(2 \mathrm{~s}\) (C) \(3 \mathrm{~s}\) (D) \(4 \mathrm{~s}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.