Chapter 2: Problem 182
The ratio of pathlength and the respective time interval is (A) Mean Velocity (B) Mean speed (C) instantaneous velocity (D) instantaneous speed
Chapter 2: Problem 182
The ratio of pathlength and the respective time interval is (A) Mean Velocity (B) Mean speed (C) instantaneous velocity (D) instantaneous speed
All the tools & learning materials you need for study success - in one app.
Get started for free$ \mathrm{A}^{\rightarrow}=3 \hat{\imath}+2 \hat{\jmath}-5 \mathrm{k}^{\wedge}\( and \)\mathrm{B}^{\rightarrow}=\hat{\imath}+\hat{\jmath}+2 \mathrm{k}^{\wedge}\( Find \)\left|\mathrm{A}^{\rightarrow}+2 \mathrm{~B}^{\rightarrow}\right|$ (A) \(\sqrt{40}\) (B) \(\sqrt{42}\) (C) \(\sqrt{39}\) (D) 2
A particle is projected vertically upwards with velocity $30 \mathrm{~ms}^{-1}$. Find the ratio of average speed and instantaneous velocity after 6 s. \(\left[\mathrm{g}=10 \mathrm{~ms}^{-1}\right]\) (A) \((1 / 2)\) (B) 2 (C) 3 (D) 4
If $\mathrm{A}^{\rightarrow}=2 \mathrm{i} \wedge+5 \mathrm{j} \wedge-\mathrm{k} \wedge\( and \)\mathrm{B}^{\rightarrow}=3 \mathrm{i} \wedge-2 \mathrm{j} \wedge-4 \mathrm{k} \wedge$ the angle between \(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) is (A) 0 (B) \((\pi / 2)\) (C) \((\pi / 4)\) (D) \((\pi / 6)\)
Which from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$
A particle has initial velocity \((2 \hat{1}+3 \hat{j}) \mathrm{ms}^{-1}\) and has acceleration \((\hat{1}+\hat{j}) \mathrm{ms}^{-2}\). Find the velocity of the particle after 2 second. (A) \((3 \hat{1}+5 \hat{j}) \mathrm{ms}^{-1}\) (B) \((4 \hat{i}+5 \hat{\jmath}) \mathrm{ms}^{-1}\) (C) \((3 \hat{1}+2 \hat{j}) \mathrm{ms}^{-1}\) (D) \((5 \hat{1}+4 \hat{j}) \mathrm{ms}^{-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.