A car covers one third part of its straight path with speed \(\mathrm{V}_{1}\) and the rest with speed \(\mathrm{V}_{2}\). What is its average speed? (A) $\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(2 \mathrm{v}_{1}+\mathrm{v}_{2}\right)\right]$ (B) $\left[\left(2 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(3 \mathrm{v}_{1}+\mathrm{v}_{2}\right)\right]$ (C) $\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(\mathrm{v}_{1}+2 \mathrm{v}_{2}\right)\right]$ (D) $\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(2 \mathrm{v}_{1}+2 \mathrm{v}_{2}\right)\right]$

Short Answer

Expert verified
The short answer is: \(\boxed{\text{(D)}\:\frac{3V_1V_2}{2V_1+2V_2}}\).

Step by step solution

01

Calculate the time taken for each part

Let \(d_1\) be the distance covered with speed \(V_1\), and \(d_2\) be the distance covered with speed \(V_2\). We know that \(d_1 = \frac{1}{3}d\) (where \(d\) is the total distance), and \(d_2 = \frac{2}{3}d\). Now, using the formula of time, \[Time = \frac{Distance}{Speed}\] Calculate the time taken for each part: \[t_1 = \frac{d_1}{V_1} = \frac{\frac{1}{3}d}{V_1}\] \[t_2 = \frac{d_2}{V_2} = \frac{\frac{2}{3}d}{V_2}\]
02

Calculate Total Time

Add the time taken for each part to calculate the total time: \[Total\:Time = t_1 + t_2 = \frac{\frac{1}{3}d}{V_1} + \frac{\frac{2}{3}d}{V_2}\]
03

Calculate the Average Speed

Now, using the formula for the average speed and the total time calculated in step 2, \[Average\:Speed = \frac{Total\:Distance}{Total\:Time} = \frac{d}{\frac{\frac{1}{3}d}{V_1} + \frac{\frac{2}{3}d}{V_2}}\]
04

Simplify the formula and compare to the given options

\[Average\:Speed = \frac{d}{\frac{\frac{1}{3}d}{V_1} + \frac{\frac{2}{3}d}{V_2}} \cdot \frac{3V_1V_2}{3V_1V_2}\] \[Average\:Speed = \frac{3V_1V_2d}{\left(\frac{1}{3}dV_2\right) + \left(\frac{2}{3}dV_1\right)}\] \[Average\:Speed = \frac{3V_1V_2d}{\left(V_2d\right) + \left(2V_1d\right)}\] Since the total distance (d) is the same for both parts, we can cancel it out: \[Average\:Speed = \frac{3V_1V_2}{\left(V_2\right) + \left(2V_1\right)}\] Comparing to the given options, the final answer is (D) \(\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(2 \mathrm{v}_{1}+2 \mathrm{v}_{2}\right)\right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An object is projected with initial velocity of \(100 \mathrm{~ms}^{-1}\) and angle of 60 . Find the vertical velocity when its horizontal displacement is \(500 \mathrm{~m} .\left(\mathrm{g}=10 \mathrm{~ms}^{-1}\right)\) (A) \(13.35 \mathrm{~ms}^{-1}\) (B) \(-13.35 \mathrm{~ms}^{-1}\) (C) \(-8.65 \mathrm{~ms}^{-1}\) (D) \(98 \mathrm{~ms}^{-1}\)

A particle in \(\mathrm{xy}\) plane is governed by $\mathrm{x}=\mathrm{A} \cos \omega \mathrm{t}, \mathrm{y}=\mathrm{A}$ \((1-\sin \omega \mathrm{t}) . \mathrm{A}\) and \(\omega\) are constants. What is the speed of the particle. (A) A\omegat (B) \(\mathrm{A} \omega^{2} \mathrm{t}\) (C) \(\mathrm{A} \omega\) (D) \(\mathrm{A}^{2} \omega \sin (\omega \mathrm{t} / 2)\)

Find a unit vector perpendicular to both \(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) (A) $\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (B) $\left[\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{-}\right) /(\mathrm{AB} \sin \theta)\right]$ (C) $\left[\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right) /(\mathrm{AB} \cos \theta)\right]$ (D) $\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) /(\mathrm{AB} \sin \theta)\right]$

Equation of a projectile is given by \(\mathrm{y}=\mathrm{Ax}-\mathrm{Bx}^{2}\). Find the range for the particle. (A) \((\mathrm{A} / \mathrm{B})\) (B) \((\mathrm{A} / 4 \mathrm{~B})\) (C) \((\mathrm{A} / 2 \mathrm{~B})\) (D) \((2 \mathrm{~A} / \mathrm{B})\)

Which from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free