Chapter 2: Problem 196
The distance travelled by a particle is given by $\mathrm{s}=3+2 \mathrm{t}+5 \mathrm{t}^{2}\( The initial velocity of the particle is \)\ldots$ (A) 2 unit (B) 3 unit (C) 10 unit (D) 5 unit
Chapter 2: Problem 196
The distance travelled by a particle is given by $\mathrm{s}=3+2 \mathrm{t}+5 \mathrm{t}^{2}\( The initial velocity of the particle is \)\ldots$ (A) 2 unit (B) 3 unit (C) 10 unit (D) 5 unit
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich from the following is a scalar? (A) Electric current (B) Velocity (C) acceleration (D) Electric field
In a uniformly accelerated motion the slope of velocity - time graph gives .... (A) The instantaneous velocity (B) The acceleration (C) The initial velocity (D) The final velocity
A particle is projected with initial speed of \(\mathrm{V}_{0}\) and angle of \(\theta\). Find the horizontal displacement when its velocity is perpendicular to initial velocity. (A) $\left[\left(\mathrm{V}_{0}^{2}\right) /(\operatorname{gtan} \theta)\right]$ (B) \(\left[\left(\mathrm{V}_{0}^{2}\right) /(\mathrm{g} \sin \theta)\right]\) (C) \(\left[\left(\mathrm{V}_{0} \sin \theta\right) / \mathrm{g}\right]\) (D) \(\left[\left(\mathrm{V}_{0}^{2}\right) /(\tan \theta)\right]\)
A particle moves with constant acceleration \(2 \mathrm{~m} / \mathrm{s}^{2}\) in \(\mathrm{x}\) direction. The distance travelled in fifth second is $19 \mathrm{~m}$. Calculate the distance travelled after 5 second. (A) \(50 \mathrm{~m}\) (B) \(75 \mathrm{~m}\) (C) \(80 \mathrm{~m}\) (D) \(70 \mathrm{~m}\)
A particle is moving in a xy plane with \(\mathrm{y}=2 \mathrm{x}\) and \(\mathrm{Vx}=2-\mathrm{t}\). Find \(\mathrm{Vy}\) at time \(\mathrm{t}=3\) second. (A) \(2 \mathrm{~ms}^{-1}\) (B) \(-3 \mathrm{~ms}^{-1}\) (C) \(+3 \mathrm{~ms}^{-1}\) (D) \(-2 \mathrm{~ms}^{-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.