Chapter 2: Problem 254
Which from the following is a scalar? (A) Electric current (B) Velocity (C) acceleration (D) Electric field
Chapter 2: Problem 254
Which from the following is a scalar? (A) Electric current (B) Velocity (C) acceleration (D) Electric field
All the tools & learning materials you need for study success - in one app.
Get started for freeFind a unit vector perpendicular to both \(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) (A) $\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (B) $\left[\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{-}\right) /(\mathrm{AB} \sin \theta)\right]$ (C) $\left[\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right) /(\mathrm{AB} \cos \theta)\right]$ (D) $\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) /(\mathrm{AB} \sin \theta)\right]$
A balloon is going vertically up with velocity \(12 \mathrm{~m} / \mathrm{s}\). When it is at height of \(65 \mathrm{~m}\) above the ground, it releases a stone. In how much time the stone will reach the ground. (A) \(\sqrt{13} \mathrm{~s}\) (B) \(10 \mathrm{~s}\) (C) \(5 \mathrm{~s}\) (D) \(6 \mathrm{~s}\)
What is the angle between \(\mathrm{Q}^{-}\) and the resultant of \(\mathrm{P}^{-}+\mathrm{Q}^{\rightarrow}\) and \(\mathrm{Q}^{\rightarrow}-\mathrm{P}^{\rightarrow}\) (A) \(90^{\circ}\) (B) \(60^{\circ} \quad\) (C) 0 (D) \(45^{\circ}\)
A car moving over a straight path covers a distance \(\mathrm{x}\) with constant speed \(10 \mathrm{~ms}^{-1}\) and then the same distance with constant speed of \(\mathrm{V}_{2}\). If average speed of the car is \(16 \mathrm{~ms}^{-1}\), then \(\mathrm{V}_{2}=\ldots\) (A) \(30 \mathrm{~ms}^{-1}\) (B) \(20 \mathrm{~ms}^{-1}\) (C) \(40 \mathrm{~ms}^{-1}\) (D) \(25 \mathrm{~ms}^{-1}\)
A body starts its motion with zero velocity and its acceleration is $\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)$. Find the distance travelled by it in fifth second. (A) \(15.5 \mathrm{~m}\) (B) \(17.5 \mathrm{~m}\) (C) \(13.5 \mathrm{~m}\) (D) \(14.5 \mathrm{~m}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.