Chapter 2: Problem 263
The resultant of two forces of magnitude \(2 \mathrm{~N}\) and \(3 \mathrm{~N}\) can never be. (A) \(4 \mathrm{~N}\) (B) \(1 \mathrm{~N}\) (C) \(2.5 \mathrm{~N}\) (D) \((1 / 2) \mathrm{N}\)
Chapter 2: Problem 263
The resultant of two forces of magnitude \(2 \mathrm{~N}\) and \(3 \mathrm{~N}\) can never be. (A) \(4 \mathrm{~N}\) (B) \(1 \mathrm{~N}\) (C) \(2.5 \mathrm{~N}\) (D) \((1 / 2) \mathrm{N}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeOut of the following pairs of forces, the resultant of which can not be $18 \mathrm{~N}$ (A) \(11 \mathrm{~N}, 7 \mathrm{~N}\) (B) \(11 \mathrm{~N}, 8 \mathrm{~N}\) (C) \(11 \mathrm{~N}, 29 \mathrm{~N}\) (D) \(11 \mathrm{~N}, 5 \mathrm{~N}\)
A particle in \(\mathrm{xy}\) plane is governed by $\mathrm{x}=\mathrm{A} \cos \omega \mathrm{t}, \mathrm{y}=\mathrm{A}$ \((1-\sin \omega \mathrm{t}) . \mathrm{A}\) and \(\omega\) are constants. What is the speed of the particle. (A) A\omegat (B) \(\mathrm{A} \omega^{2} \mathrm{t}\) (C) \(\mathrm{A} \omega\) (D) \(\mathrm{A}^{2} \omega \sin (\omega \mathrm{t} / 2)\)
\(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) are nonzero vectors. Which from the followings is true ? (A) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)\) (B) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)\) (C) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) (D) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=\mathrm{A}^{2}-\mathrm{B}^{2}\)
Velocity of particle \(\mathrm{A}\) with respect to particle \(\mathrm{B}\) is \(4(\mathrm{~m} / \mathrm{s})\) while they are moving in same direction. And it is \(10(\mathrm{~m} / \mathrm{s})\) while they are in opposite direction. What are the velocities of the particles with respect to the stationary frame of reference. (A) \(7 \mathrm{~ms}^{-1}, 3 \mathrm{~ms}^{-1}\) (B) \(4 \mathrm{~ms}^{-1}, 5 \mathrm{~ms}^{-1}\) (C) \(7 \mathrm{~ms}^{-1}, 4 \mathrm{~ms}^{-1}\) (D) \(10 \mathrm{~ms}^{-1}, 4 \mathrm{~ms}^{-1}\)
Comprehensions type questions. A particle is moving in a circle of radius \(R\) with constant speed. The time period of the particle is T Now after time \(\mathrm{t}=(\mathrm{T} / 6)\) Average velocity of the particle is (A) \((3 \mathrm{R} / \mathrm{T})\) (B) \((6 \mathrm{R} / \mathrm{T})\) (C) \((2 \mathrm{R} / \mathrm{T})\) (D) \((4 \mathrm{R} / \mathrm{T})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.