\(\mathrm{A}^{-}+\mathrm{B}^{-}\) is perpendicular to \(\mathrm{A}^{-}\) and \(\left|\mathrm{B}^{-}\right|=2\left|\mathrm{~A}^{-}+\mathrm{B}^{-}\right|\) What is the angle between \(\mathrm{A}^{-}\) and \(\mathrm{B}^{\rightarrow}\) \((\mathrm{A})(\pi / 6)\) (B) \((5 \pi / 6)\) (C) \((2 \pi / 3)\) (D) \((\pi / 3)\)

Short Answer

Expert verified
The angle between \(\mathrm{A}^{-}\) and \(\mathrm{B}^{\rightarrow}\) is \(\boxed{(D) \frac{\pi}{3}}\).

Step by step solution

01

Find the dot product

Since \(\mathrm{A}^{-}+\mathrm{B}^{-}\) is perpendicular to \(\mathrm{A}^{-}\), their dot product is equal to 0. Thus, we can write: \((\mathrm{A}^{-}+\mathrm{B}^{-})\cdot \mathrm{A}^{-}=0\)
02

Expand the dot product

We can expand the dot product as: \(\mathrm{A}^{-}\cdot\mathrm{A}^{-}+\mathrm{B}^{-}\cdot\mathrm{A}^{-}=0\)
03

Use the magnitude relationship

Now, we use the relationship between the magnitudes of \(\mathrm{B}^{-}\) and \(\mathrm{A}^{-}+\mathrm{B}^{-}\) which is \(\left|\mathrm{B}^{-}\right|=2\left|\mathrm{A}^{-}+\mathrm{B}^{-}\right|\). Square both sides: \begin{align*} \left|\mathrm{B}^{-}\right|^2 &= 4\left|\mathrm{A}^{-}+\mathrm{B}^{-}\right|^2 \\ \left(\mathrm{B}^{-}\cdot\mathrm{B}^{-}\right) &= 4\left(\mathrm{A}^{-}+\mathrm{B}^{-}\right)\cdot\left(\mathrm{A}^{-}+\mathrm{B}^{-}\right) \end{align*}
04

Expand and simplify

Expand and simplify the equation above: \begin{align*} \mathrm{B}^{-}\cdot\mathrm{B}^{-}&=4\left(\mathrm{A}^{-}\cdot\mathrm{A}^{-}+2\mathrm{A}^{-}\cdot\mathrm{B}^{-}+\mathrm{B}^{-}\cdot\mathrm{B}^{-}\right) \\ \mathrm{B}^{-}\cdot\mathrm{B}^{-}&=4\mathrm{A}^{-}\cdot\mathrm{A}^{-}+8\mathrm{A}^{-}\cdot\mathrm{B}^{-}+4\mathrm{B}^{-}\cdot\mathrm{B}^{-} \\ 3\mathrm{B}^{-}\cdot\mathrm{B}^{-}&=4\mathrm{A}^{-}\cdot\mathrm{A}^{-}+8\mathrm{A}^{-}\cdot\mathrm{B}^{-} \end{align*}
05

Dot product of B with A

We can express the dot product of \(\mathrm{B}^{-}\) with \(\mathrm{A}^{-}\) in terms of the previous result: \(\mathrm{B}^{-}\cdot\mathrm{A}^{-}=-\frac{1}{2}\mathrm{A}^{-}\cdot\mathrm{A}^{-}\)
06

Cosine of the angle between A and B

Now, let \(\theta\) be the angle between \(\mathrm{A}^{-}\) and \(\mathrm{B}^{\rightarrow}\) (not \(\mathrm{B}^{-}\)). Recall that the dot product can be expressed in terms of the angle between two vectors and their magnitudes. So: \begin{align*} \mathrm{A}^{-}\cdot\mathrm{B}^{-}&=\left|\mathrm{A}^{-}\right|\left|\mathrm{B}^{\rightarrow}\right|\cos(\pi-\theta) \\ -\frac{1}{2}\mathrm{A}^{-}\cdot\mathrm{A}^{-}&=\left|\mathrm{A}^{-}\right|\left|\mathrm{B}^{-}\right|\cos(\pi-\theta) \end{align*}
07

Solve for the angle

Finally, we solve for the angle \(\theta\) by dividing both sides by \(\left|\mathrm{A}^{-}\right|\left|\mathrm{B}^{-}\right|\). Recall that \(\cos(\pi-\theta)=-\cos(\theta)\). So: \begin{align*} \cos(\theta)&=\frac{1}{2} \\ \theta&=\frac{\pi}{3} \end{align*} Thus, the angle between \(\mathrm{A}^{-}\) and \(\mathrm{B}^{\rightarrow}\) is \(\boxed{(D) \frac{\pi}{3}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$

To introduce a vector quantity .... (A) it needs magnitude not direction (B) it needs direction not magnitude (C) it needs both magnitude and direction (D) nothing is needed

\(\mathrm{A}=+\mathrm{i} \wedge+\mathrm{j} \wedge-2 \mathrm{k} \wedge\) and $\mathrm{B} \overrightarrow{\mathrm{i}} \wedge-\mathrm{j} \wedge+\mathrm{k} \wedge$ Find the unit vector in direction of \(\mathrm{A} \rightarrow \times \mathrm{B}^{\rightarrow}\) (A) $[1 / \sqrt{(23)}](-\mathrm{i} \wedge-5 \mathrm{j} \wedge-2 \mathrm{k} \wedge)$ (B) $[1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 \mathrm{j} \wedge-3 \mathrm{k} \wedge)$ (C) \([1 / \sqrt{(29})](-i \wedge-5 j \wedge-3 k \wedge)\) (D) \([1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 j \wedge-3 \mathrm{k} \wedge)\)

A stone is projected with an angle \(\theta\) and velocity \(\mathrm{V}_{0}\) from point \(P\). It strikes the ground at point \(Q\). If the both \(P\) and \(Q\) are on same horizontal line, then find average velocity. (A) \(V_{0} \cos \theta\) (B) \(\mathrm{V}_{0} \sin \theta\) (C) \(\mathrm{V}_{0} \cos (\theta / 2)\) (D) \(\mathrm{V}_{0} \sin (\theta / 2)\)

An object moves in a straight line. It starts from the rest and its acceleration is \(2 \mathrm{~ms}^{-2}\). After reaching a certain point it comes back to the original point. In this movement its acceleration is $-3 \mathrm{~ms}^{-2}$. till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity. (A) \(6 \mathrm{~ms}^{-1}\) (B) \(5 \mathrm{~ms}^{-1}\) (C) \(10 \mathrm{~ms}^{-1}\) (D) \(4 \mathrm{~ms}^{-1}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free