Chapter 2: Problem 272
Linear momentum of a particle is $(3 \mathrm{i} \wedge+2 \mathrm{j} \wedge-\mathrm{k} \wedge) \mathrm{kg} \mathrm{ms}^{-1}$. Find its magnitude. (A) \(\sqrt{14}\) (B) \(\sqrt{12}\) (C) \(\sqrt{15}\) (D) \(\sqrt{11}\)
Chapter 2: Problem 272
Linear momentum of a particle is $(3 \mathrm{i} \wedge+2 \mathrm{j} \wedge-\mathrm{k} \wedge) \mathrm{kg} \mathrm{ms}^{-1}$. Find its magnitude. (A) \(\sqrt{14}\) (B) \(\sqrt{12}\) (C) \(\sqrt{15}\) (D) \(\sqrt{11}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA goods train is moving with constant acceleration. When engine passes through a signal its speed is U. Midpoint of the train passes the signal with speed \(\mathrm{V}\). What will be the speed of the last wagon? (B) \(\left.\sqrt{[}\left(\mathrm{V}^{2}-\mathrm{U}^{2}\right) / 2\right]\) (D) \(\sqrt{[}\left(2 \mathrm{~V}^{2}-\mathrm{U}^{2}\right)\)
Comprehensions type questions. A particle is moving in a circle of radius \(R\) with constant speed. The time period of the particle is T Now after time \(\mathrm{t}=(\mathrm{T} / 6)\) Average velocity of the particle is (A) \((3 \mathrm{R} / \mathrm{T})\) (B) \((6 \mathrm{R} / \mathrm{T})\) (C) \((2 \mathrm{R} / \mathrm{T})\) (D) \((4 \mathrm{R} / \mathrm{T})\)
A particle is thrown in upward direction with initial velocity of $60 \mathrm{~m} / \mathrm{s}$. Find average speed and average velocity after 10 seconds. \(\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]\) (A) \(26 \mathrm{~ms}^{-1}, 16 \mathrm{~ms}^{-1}\) (B) \(26 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (C) \(20 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (D) \(15 \mathrm{~ms}^{-1}, 25 \mathrm{~ms}^{-1}\)
Which from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$
\(\mathrm{P}^{\rightarrow}=\mathrm{Q}^{\rightarrow}\) is true, if \(\ldots\) (A) their magnitudes are equal (B) they are in same direction (C) their magnitudes are equal and they are in same direction (D) their magnitudes are not equal and they are not in same direction
What do you think about this solution?
We value your feedback to improve our textbook solutions.