$\quad\left(\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right) \cdot\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right)=\ldots$ (A) 0 (B) \(A^{2}+B^{2}\) (C) \(\sqrt{\left(A^{2}+B^{2}\right)}\) (D) \(\mathrm{A}^{2} \mathrm{~B}^{2}\)

Short Answer

Expert verified
The short answer based on the step-by-step solution is: The expression \[\left(\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right) \cdot \left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right)\] is equal to 0 (choice (A)).

Step by step solution

01

Write out the given expression

We need to find the value of the given expression, which is: \[\left(\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right) \cdot \left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right)\]
02

Recall properties of dot and cross product

Remember that the dot product has the following properties: 1. Distributive: \(\mathrm{A}^{\rightarrow} \cdot (\mathrm{B}^{\rightarrow}+\mathrm{C}^{\rightarrow})= \mathrm{A}^{\rightarrow}\cdot \mathrm{B}^{\rightarrow}+\mathrm{A}^{\rightarrow}\cdot \mathrm{C}^{\rightarrow}\) 2. Commutative: \(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow} = \mathrm{B}^{\rightarrow} \cdot \mathrm{A}^{\rightarrow}\) As for the cross product, we have the following properties: 1. Anticommutative: \(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow} = -\mathrm{B}^{\rightarrow} \times \mathrm{A}^{\rightarrow}\) 2. Distributive: \(\mathrm{A}^{\rightarrow} \times (\mathrm{B}^{\rightarrow}+\mathrm{C}^{\rightarrow}) = \mathrm{A}^{\rightarrow}\times \mathrm{B}^{\rightarrow} + \mathrm{A}^{\rightarrow}\times \mathrm{C}^{\rightarrow}\)
03

Apply the dot product distributive property

Applying the dot product distributive property, the given expression becomes: \[(\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow})\cdot(\mathrm{A}^{\rightarrow}\times\mathrm{B}^{\rightarrow}) = \mathrm{A}^{\rightarrow}\cdot(\mathrm{A}^{\rightarrow}\times\mathrm{B}^{\rightarrow}) + \mathrm{B}^{\rightarrow}\cdot(\mathrm{A}^{\rightarrow}\times\mathrm{B}^{\rightarrow})\]
04

Apply the anticommutative property of the cross product

For both terms on the right-hand side of the equation, the dot product of a cross product is involved, so we can write: \[\mathrm{A}^{\rightarrow} \cdot (\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}) = - \mathrm{A}^{\rightarrow} \cdot (\mathrm{B}^{\rightarrow} \times \mathrm{A}^{\rightarrow})\] \[\mathrm{B}^{\rightarrow} \cdot (\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}) = -\mathrm{B}^{\rightarrow} \cdot (\mathrm{B}^{\rightarrow} \times \mathrm{A}^{\rightarrow})\] Now, the expression from Step 3 becomes: \[-(\mathrm{A}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow}))+(-\mathrm{B}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow}))\]
05

Identify the scalar triple product and its property

The scalar triple product is defined as: \[\mathrm{A}^{\rightarrow} \cdot (\mathrm{B}^{\rightarrow} \times\mathrm{C}^{\rightarrow}) = \mathrm{B}^{\rightarrow} \cdot (\mathrm{C}^{\rightarrow} \times\mathrm{A}^{\rightarrow}) = \mathrm{C}^{\rightarrow} \cdot (\mathrm{A}^{\rightarrow}\times\mathrm{B}^{\rightarrow})\] Now we see that the terms in the expression from Step 4 are scalar triple products: \[-(\mathrm{A}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow}))=-\mathrm{A}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow})\] \[-(\mathrm{B}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow}))=-\mathrm{B}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow})\] Since each term on the right-hand side is equal, their sum will be zero: \[-\mathrm{A}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow})-\mathrm{B}^{\rightarrow}\cdot(\mathrm{B}^{\rightarrow}\times\mathrm{A}^{\rightarrow})=0\] Therefore, the original expression is equal to 0, which corresponds to choice (A).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A body starts its motion with zero velocity and its acceleration is $\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)$. Find the distance travelled by it in fifth second. (A) \(15.5 \mathrm{~m}\) (B) \(17.5 \mathrm{~m}\) (C) \(13.5 \mathrm{~m}\) (D) \(14.5 \mathrm{~m}\)

Two particles \(\mathrm{P}\) and \(\mathrm{Q}\) get \(5 \mathrm{~m}\) closer each second while travelling in opposite direction. They get \(1 \mathrm{~m}\) closer each second while travelling in same direction. The speeds of \(\mathrm{P}\) and \(\mathrm{Q}\) are respectively (A) \(5 \mathrm{~ms}^{-1}, 1 \mathrm{~ms}^{-1}\) (B) \(3 \mathrm{~ms}^{-1}, 4 \mathrm{~ms}^{-1}\) (C) \(3 \mathrm{~ms}^{-1}, 2 \mathrm{~ms}^{-1}\) (D) \(10 \mathrm{~ms}^{-1}, 5 \mathrm{~ms}^{-1}\)

If \(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}=0\) then (A) \(\left|\mathrm{A}^{\rightarrow}\right|\) must be zero (B) \(\mathrm{B}^{\rightarrow} \mid\) must be zero (C) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=0\) (D) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=(\pi / 2)\)

A ball is thrown vertically upward. What is the velocity and acceleration of the ball at the maximum height? (A) \(-\) gt \(\mathrm{ms}^{-1}, 0\) (B) \(0,-9 \mathrm{~ms}^{-2}\) (C) \(\mathrm{g} \mathrm{ms}^{-1}, 0\) (D) \(0,-\mathrm{gt} \mathrm{ms}^{-2}\)

A particle is thrown in upward direction with Velocity \(\mathrm{V}_{0}\). It passes through a point \(\mathrm{p}\) of height \(\mathrm{h}\) at time \(\mathrm{t}_{1}\) and \(\mathrm{t}_{2}\) so \(\mathrm{t}_{1}+\mathrm{t}_{2}=\ldots\) (A) \(\left(\mathrm{v}_{0} / \mathrm{g}\right)\) (B) \(\left[\left(2 \mathrm{v}_{0}\right) / \mathrm{g}\right]\) (C) \((2 \mathrm{~h} / \mathrm{g})\) (D) \((\mathrm{h} / 2 \mathrm{~g})\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free