Chapter 2: Problem 283
The angle between \(i \wedge+j \wedge\) and \(z\) axis is \(\ldots\) (A) 0 (B) 45 (C) 90 (D) 180
Chapter 2: Problem 283
The angle between \(i \wedge+j \wedge\) and \(z\) axis is \(\ldots\) (A) 0 (B) 45 (C) 90 (D) 180
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$
The resultant of two vectors \(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) (A) can be smaller than \(\mathrm{A}-\mathrm{B}\) in magnitude (B) can be greater than \(\mathrm{A}+\mathrm{B}\) in magnitude (C) can't be greater than \(\mathrm{A}+\mathrm{B}\) or smaller than \(\mathrm{A}-\mathrm{B}\) in magnitude (D) none of above is true
A particle goes from point \(\mathrm{A}\) to \(\mathrm{B}\). Its displacement is \(\mathrm{X}\) and path length is \(\mathrm{y}\). So $\mathrm{x} / \mathrm{y} \ldots$ \((\mathrm{A})>1\) (B) \(<1\) (C) \(\geq 1\) (D) \(\leq 1\)
Linear momentum of a particle is $(3 \mathrm{i} \wedge+2 \mathrm{j} \wedge-\mathrm{k} \wedge) \mathrm{kg} \mathrm{ms}^{-1}$. Find its magnitude. (A) \(\sqrt{14}\) (B) \(\sqrt{12}\) (C) \(\sqrt{15}\) (D) \(\sqrt{11}\)
The area under acceleration versus time graph for any time interval represents... (A) Initial velocity (B) final velocity (C) change in velocity in the time interval (D) Distance covered by the particle
What do you think about this solution?
We value your feedback to improve our textbook solutions.