Chapter 2: Problem 296
Find a unit vector from the followings. (A) \(\hat{\imath}+\hat{j}\) (B) \(\hat{\imath}-\hat{j}\) (C) \((1 / \sqrt{2}) \hat{\imath}+(1 / \sqrt{2}) \hat{\jmath}\) (D) \((1 / \sqrt{2}) \hat{1}-(1 / 2) \hat{\jmath}\)
Chapter 2: Problem 296
Find a unit vector from the followings. (A) \(\hat{\imath}+\hat{j}\) (B) \(\hat{\imath}-\hat{j}\) (C) \((1 / \sqrt{2}) \hat{\imath}+(1 / \sqrt{2}) \hat{\jmath}\) (D) \((1 / \sqrt{2}) \hat{1}-(1 / 2) \hat{\jmath}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}=0\) then (A) \(\left|\mathrm{A}^{\rightarrow}\right|\) must be zero (B) \(\mathrm{B}^{\rightarrow} \mid\) must be zero (C) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=0\) (D) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=(\pi / 2)\)
Linear momentum of a particle is $(3 \mathrm{i} \wedge+2 \mathrm{j} \wedge-\mathrm{k} \wedge) \mathrm{kg} \mathrm{ms}^{-1}$. Find its magnitude. (A) \(\sqrt{14}\) (B) \(\sqrt{12}\) (C) \(\sqrt{15}\) (D) \(\sqrt{11}\)
Angle of projection, maximum height and time to reach the maximum height of a particle are \(\theta, \mathrm{H}\) and \(\mathrm{tm}\) respectively. Find the true relation. (A) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(\mathrm{H} / 2 \mathrm{~g})}\) (B) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(2 \mathrm{H} / \mathrm{g})}\) (C) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(4 \mathrm{H} / \mathrm{g})}\) (D) \(t_{\mathrm{m}}=\sqrt{(\mathrm{H} / 4 \mathrm{~g})}\)
The motion of a particle along a straight line is described by the function \(\mathrm{x}=(3 \mathrm{t}-2)^{2}\). Calculate the acceleration after $10 \mathrm{~s}$. (A) \(9 \mathrm{~ms}^{-2}\) (B) \(18 \mathrm{~ms}^{-2}\) (C) \(36 \mathrm{~ms}^{-2}\) (D) \(6 \mathrm{~ms}^{-2}\)
A particle moves with a constant acceleration $\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)\( Its initial velocity is \)10 \mathrm{~m} / \mathrm{s}$. Find velocity after \(\mathrm{t}\) second. (A) \((10+\mathrm{t}) \mathrm{ms}^{-1}\) (B) \(5(2+\mathrm{t}) \mathrm{ms}^{-1}\) (C) \(2(5+\mathrm{t}) \mathrm{ms}^{-1}\) (D) \(\left(10+\mathrm{t}^{2}\right) \mathrm{ms}^{-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.