Find a unit vector from the followings. (A) \(\hat{\imath}+\hat{j}\) (B) \(\hat{\imath}-\hat{j}\) (C) \((1 / \sqrt{2}) \hat{\imath}+(1 / \sqrt{2}) \hat{\jmath}\) (D) \((1 / \sqrt{2}) \hat{1}-(1 / 2) \hat{\jmath}\)

Short Answer

Expert verified
(A) \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) (B) \(\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)\) (C) \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) (D) \(\left(\frac{(1/\sqrt{2})}{\sqrt{(1/\sqrt{2})^2 + (-1/2)^2}}, \frac{(-1/2)}{\sqrt{(1/\sqrt{2})^2 + (-1/2)^2}}\right)\)

Step by step solution

01

(A) Unit Vector

\((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\)
02

(B) Unit Vector

\((\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\)
03

(C) Unit Vector

Since the magnitude is already 1, the vector itself is a unit vector: \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\)
04

(D) Unit Vector

\((\frac{(1/\sqrt{2})}{\sqrt{(1/\sqrt{2})^2 + (-1/2)^2}}, \frac{(-1/2)}{\sqrt{(1/\sqrt{2})^2 + (-1/2)^2}})\) To summarize, the unit vectors corresponding to the given vectors are: (A) \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\) (B) \((\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\) (C) \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\) (D) \((\frac{(1/\sqrt{2})}{\sqrt{(1/\sqrt{2})^2 + (-1/2)^2}}, \frac{(-1/2)}{\sqrt{(1/\sqrt{2})^2 + (-1/2)^2}})\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}=0\) then (A) \(\left|\mathrm{A}^{\rightarrow}\right|\) must be zero (B) \(\mathrm{B}^{\rightarrow} \mid\) must be zero (C) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=0\) (D) either \(\mathrm{A}^{\rightarrow}=0, \mathrm{~B}^{\rightarrow}=0\) or \(\theta=(\pi / 2)\)

Linear momentum of a particle is $(3 \mathrm{i} \wedge+2 \mathrm{j} \wedge-\mathrm{k} \wedge) \mathrm{kg} \mathrm{ms}^{-1}$. Find its magnitude. (A) \(\sqrt{14}\) (B) \(\sqrt{12}\) (C) \(\sqrt{15}\) (D) \(\sqrt{11}\)

Angle of projection, maximum height and time to reach the maximum height of a particle are \(\theta, \mathrm{H}\) and \(\mathrm{tm}\) respectively. Find the true relation. (A) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(\mathrm{H} / 2 \mathrm{~g})}\) (B) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(2 \mathrm{H} / \mathrm{g})}\) (C) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(4 \mathrm{H} / \mathrm{g})}\) (D) \(t_{\mathrm{m}}=\sqrt{(\mathrm{H} / 4 \mathrm{~g})}\)

The motion of a particle along a straight line is described by the function \(\mathrm{x}=(3 \mathrm{t}-2)^{2}\). Calculate the acceleration after $10 \mathrm{~s}$. (A) \(9 \mathrm{~ms}^{-2}\) (B) \(18 \mathrm{~ms}^{-2}\) (C) \(36 \mathrm{~ms}^{-2}\) (D) \(6 \mathrm{~ms}^{-2}\)

A particle moves with a constant acceleration $\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)\( Its initial velocity is \)10 \mathrm{~m} / \mathrm{s}$. Find velocity after \(\mathrm{t}\) second. (A) \((10+\mathrm{t}) \mathrm{ms}^{-1}\) (B) \(5(2+\mathrm{t}) \mathrm{ms}^{-1}\) (C) \(2(5+\mathrm{t}) \mathrm{ms}^{-1}\) (D) \(\left(10+\mathrm{t}^{2}\right) \mathrm{ms}^{-1}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free