Stone \(\mathrm{A}\) is thrown in horizontal direction with velocity of $10 \mathrm{~ms}^{-1}\( at the same time stone \)\mathrm{B}$ freely falls vertically in downward direction. Calculate the velocity of \(\mathrm{B}\) with respect to \(\mathrm{A}\) after 10 second. (A) \(10 \mathrm{~ms}^{-1}\) (B) \(\sqrt{(101)} \mathrm{ms}^{-1}\) (C) \(10 \sqrt{(101)} \mathrm{ms}^{-1}\) (D) 0

Short Answer

Expert verified
The velocity of stone B with respect to stone A after 10 seconds is \(10\sqrt{101} \mathrm{~ms}^{-1}\). The correct answer is (C) \(10\sqrt{101} \mathrm{~ms}^{-1}\).

Step by step solution

01

Determine the given data and write down the relevant formulas

Given data: - Stone A is thrown horizontally with a velocity of 10 m/s - Stone B falls freely vertically downward Relevant formulas: 1. Final velocity after time t: \(v_f = v_i + at\) 2. Relative velocity: \(v_{rel} = v_B - v_A\)
02

Calculate the horizontal velocity of Stone A

The horizontal velocity of stone A remains constant because there is no acceleration in the horizontal direction. Therefore, the horizontal velocity of stone A after 10 seconds is 10 m/s.
03

Calculate the vertical velocity of Stone B after 10 seconds

Since stone B is falling freely, it experiences acceleration due to gravity, which we will take as \(9.8\mathrm{~ms}^{-2}\). Using the given time (10 seconds), we can calculate the final vertical velocity of stone B after 10 seconds using the formula: \(v_f = v_i + at\) Since stone B is falling freely, we take \(v_i = 0\mathrm{~ms}^{-1}\). \(v_f = 0 + (9.8)(10)\) \(v_f = 98\mathrm{~ms}^{-1}\) Stone B has a vertical velocity of 98 m/s after 10 seconds.
04

Determine the velocity of Stone B with respect to Stone A

To find the relative velocity of stone B with respect to stone A, we will have to take vector differences between the horizontal and vertical directions. Let vx represent the horizontal component and vy represent the vertical component of the velocities: \(v_{Bx} = 0 \mathrm{ms}^{-1}\) (Because Stone B falls vertically) \(v_{By} = 98 \mathrm{~ms}^{-1}\) \(v_{Ax} = 10 \mathrm{~ms}^{-1}\) \(v_{Ay} = 0 \mathrm{~ms}^{-1}\) (Because Stone A moves horizontally) Now we calculate the relative velocity components: \(\Delta v_x = v_{Bx} - v_{Ax} = 0 - 10 = -10\mathrm{~ms}^{-1}\) \(\Delta v_y = v_{By} - v_{Ay} = 98 - 0 = 98\mathrm{~ms}^{-1}\) Now we calculate the magnitude of the relative velocity: \(v_{rel} = \sqrt{(\Delta v_x)^2 + (\Delta v_y)^2}\) \(v_{rel} = \sqrt{(-10)^2 + (98)^2}\) \(v_{rel} = \sqrt{100 + 9604}\) \(v_{rel} = \sqrt{9704}\) \(v_{rel} = 10\sqrt{101} \mathrm{~ms}^{-1}\) The velocity of stone B with respect to stone A after 10 seconds is \(10\sqrt{101} \mathrm{~ms}^{-1}\). The correct answer is (C) \(10\sqrt{101} \mathrm{~ms}^{-1}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle is thrown in upward direction with Velocity \(\mathrm{V}_{0}\). It passes through a point \(\mathrm{p}\) of height \(\mathrm{h}\) at time \(\mathrm{t}_{1}\) and \(\mathrm{t}_{2}\) so \(\mathrm{t}_{1}+\mathrm{t}_{2}=\ldots\) (A) \(\left(\mathrm{v}_{0} / \mathrm{g}\right)\) (B) \(\left[\left(2 \mathrm{v}_{0}\right) / \mathrm{g}\right]\) (C) \((2 \mathrm{~h} / \mathrm{g})\) (D) \((\mathrm{h} / 2 \mathrm{~g})\)

A particle is thrown in upward direction with initial velocity of $60 \mathrm{~m} / \mathrm{s}$. Find average speed and average velocity after 10 seconds. \(\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]\) (A) \(26 \mathrm{~ms}^{-1}, 16 \mathrm{~ms}^{-1}\) (B) \(26 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (C) \(20 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (D) \(15 \mathrm{~ms}^{-1}, 25 \mathrm{~ms}^{-1}\)

\(\mathrm{A}=+\mathrm{i} \wedge+\mathrm{j} \wedge-2 \mathrm{k} \wedge\) and $\mathrm{B} \overrightarrow{\mathrm{i}} \wedge-\mathrm{j} \wedge+\mathrm{k} \wedge$ Find the unit vector in direction of \(\mathrm{A} \rightarrow \times \mathrm{B}^{\rightarrow}\) (A) $[1 / \sqrt{(23)}](-\mathrm{i} \wedge-5 \mathrm{j} \wedge-2 \mathrm{k} \wedge)$ (B) $[1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 \mathrm{j} \wedge-3 \mathrm{k} \wedge)$ (C) \([1 / \sqrt{(29})](-i \wedge-5 j \wedge-3 k \wedge)\) (D) \([1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 j \wedge-3 \mathrm{k} \wedge)\)

Angle of projection of a projectile with horizontal line is \(\theta\) at time \(t=0\), After what time the angle will be again \(\theta\) ? (A) \([(\mathrm{V} \cos \theta) / \mathrm{g}]\) (B) \([(\mathrm{V} \sin \theta) / \mathrm{g}]\) (C) \(\left[\left(\mathrm{V}_{0} \sin \theta\right) / 2 \mathrm{~g}\right]\) (D) \(\left[\left(2 \mathrm{~V}_{0} \sin \theta\right) / \mathrm{g}\right]\)

A ball is thrown vertically upward. What is the velocity and acceleration of the ball at the maximum height? (A) \(-\) gt \(\mathrm{ms}^{-1}, 0\) (B) \(0,-9 \mathrm{~ms}^{-2}\) (C) \(\mathrm{g} \mathrm{ms}^{-1}, 0\) (D) \(0,-\mathrm{gt} \mathrm{ms}^{-2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free