A particle has initial velocity \((2 \hat{1}+3 \hat{j}) \mathrm{ms}^{-1}\) and has acceleration \((\hat{1}+\hat{j}) \mathrm{ms}^{-2}\). Find the velocity of the particle after 2 second. (A) \((3 \hat{1}+5 \hat{j}) \mathrm{ms}^{-1}\) (B) \((4 \hat{i}+5 \hat{\jmath}) \mathrm{ms}^{-1}\) (C) \((3 \hat{1}+2 \hat{j}) \mathrm{ms}^{-1}\) (D) \((5 \hat{1}+4 \hat{j}) \mathrm{ms}^{-1}\)

Short Answer

Expert verified
The velocity of the particle after 2 seconds is \(4\hat{i} + 5\hat{j} \,\text{ms}^{-1}\).

Step by step solution

01

Identify given information

We are given: - Initial velocity: \(\vec{v_0} = 2\hat{i} + 3\hat{j} \,\text{ms}^{-1}\) - Acceleration: \(\vec{a} = \hat{i} + \hat{j} \,\text{ms}^{-2}\) - Time: \(t = 2\,\text{s}\) We need to find the velocity \(\vec{v}\) after 2 seconds.
02

Write the velocity equation for each component

The equation for the velocity of the particle as a function of time is given by: \[ \vec{v}(t) = \vec{v_0} + \vec{a}t \] To find the x and y components of the velocity, we will write the equation separately for each component: - For x-component: \(v_x(t) = v_{0x} + a_x t\) - For y-component: \(v_y(t) = v_{0y} + a_y t\)
03

Substitute given values into the equations

We will now substitute the given values into the equations: - \(v_x(t=2) = 2\hat{i} + (\hat{i})(2)\) - \(v_y(t=2) = 3\hat{j} + (\hat{j})(2)\)
04

Calculate the components of the velocity

Compute the components: - \(v_x(t=2) = 2\hat{i} + 2\hat{i} = 4\hat{i}\) - \(v_y(t=2) = 3\hat{j} + 2\hat{j} = 5\hat{j}\)
05

Combine the components to find the final velocity vector

Combine the components: \[ \vec{v}(t=2) = 4\hat{i} + 5\hat{j} \] So, the velocity of the particle after 2 seconds is \(4\hat{i} + 5\hat{j} \,\text{ms}^{-1}\), which corresponds to the answer (B).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Equation of a projectile is given by \(\mathrm{y}=\mathrm{Ax}-\mathrm{Bx}^{2}\). Find the range for the particle. (A) \((\mathrm{A} / \mathrm{B})\) (B) \((\mathrm{A} / 4 \mathrm{~B})\) (C) \((\mathrm{A} / 2 \mathrm{~B})\) (D) \((2 \mathrm{~A} / \mathrm{B})\)

The distance travelled by a particle is given by $\mathrm{s}=3+2 \mathrm{t}+5 \mathrm{t}^{2}\( The initial velocity of the particle is \)\ldots$ (A) 2 unit (B) 3 unit (C) 10 unit (D) 5 unit

A car covers one third part of its straight path with speed \(\mathrm{V}_{1}\) and the rest with speed \(\mathrm{V}_{2}\). What is its average speed? (A) $\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(2 \mathrm{v}_{1}+\mathrm{v}_{2}\right)\right]$ (B) $\left[\left(2 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(3 \mathrm{v}_{1}+\mathrm{v}_{2}\right)\right]$ (C) $\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(\mathrm{v}_{1}+2 \mathrm{v}_{2}\right)\right]$ (D) $\left[\left(3 \mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(2 \mathrm{v}_{1}+2 \mathrm{v}_{2}\right)\right]$

Find a unit vector perpendicular to both \(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) (A) $\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (B) $\left[\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{-}\right) /(\mathrm{AB} \sin \theta)\right]$ (C) $\left[\left(\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right) /(\mathrm{AB} \cos \theta)\right]$ (D) $\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) /(\mathrm{AB} \sin \theta)\right]$

A balloon is going vertically up with velocity \(12 \mathrm{~m} / \mathrm{s}\). When it is at height of \(65 \mathrm{~m}\) above the ground, it releases a stone. In how much time the stone will reach the ground. (A) \(\sqrt{13} \mathrm{~s}\) (B) \(10 \mathrm{~s}\) (C) \(5 \mathrm{~s}\) (D) \(6 \mathrm{~s}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free