A particle in \(\mathrm{xy}\) plane is governed by $\mathrm{x}=\mathrm{A} \cos \omega \mathrm{t}, \mathrm{y}=\mathrm{A}$ \((1-\sin \omega \mathrm{t}) . \mathrm{A}\) and \(\omega\) are constants. What is the speed of the particle. (A) A\omegat (B) \(\mathrm{A} \omega^{2} \mathrm{t}\) (C) \(\mathrm{A} \omega\) (D) \(\mathrm{A}^{2} \omega \sin (\omega \mathrm{t} / 2)\)

Short Answer

Expert verified
The short answer is: The speed of the particle is (C) \(A\omega\).

Step by step solution

01

Find the velocity in the x-direction

To find the velocity in the x-direction, we need to take the time derivative of the x(t) equation: \(v_x(t) = \frac{dx}{dt}\). Using the chain rule, we have: \(v_x(t) = \frac{d}{dt} [A \cos(\omega t)] = -A\omega\sin(\omega t)\)
02

Find the velocity in the y-direction

Similarly for the y-direction, we need to take the time derivative of the y(t) equation: \(v_y(t) =\frac{dy}{dt}\). Using the chain rule, we have: \(v_y(t) = \frac{d}{dt} [A(1 - \sin(\omega t))] = -A\omega\cos(\omega t)\)
03

Find the speed of the particle

Now that we have the velocity components, we can find the speed of the particle using the formula: \(\mathrm{speed} = \sqrt{v_x(t)^2 + v_y(t)^2}\) Substitute \(v_x(t) = -A\omega\sin(\omega t)\) and \(v_y(t) = -A\omega\cos(\omega t)\): \(\mathrm{speed} = \sqrt{(-A\omega\sin(\omega t))^2 + (-A\omega\cos(\omega t))^2}\)
04

Simplify the speed equation

Expanding and simplifying the speed equation, we get: \(\mathrm{speed} = \sqrt{(A^2\omega^2\sin^2(\omega t) + A^2\omega^2\cos^2(\omega t))}\) Factoring out \(A^2\omega^2\), we have: \(\mathrm{speed} = \sqrt{A^2\omega^2(\sin^2(\omega t) + \cos^2(\omega t))}\) Since \(\sin^2(\omega t) + \cos^2(\omega t) = 1\), the speed expression simplifies to: \(\mathrm{speed} = A\omega\) Therefore, the correct answer is (C) \(A\omega\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Rohit completes a semicircular path of radius \(\mathrm{R}\) in 10 seconds. Calculate average speed and average velocity in \(\mathrm{ms}^{-1}\) (A) \([(2 \pi R) / 10],(2 R / 10)\) (B) \((\pi R / 10),(\mathrm{R} / 10)\) (C) \((\pi R / 10),(2 R / 10)\) (D) \([(2 \pi R) / 10],(\mathrm{R} / 10)\)

Find a unit vector in direction of \(\hat{1}+2 \hat{\jmath}-3 \mathrm{k}\) (A) \((1 / \sqrt{7})(\hat{1}+2 \hat{\jmath}-3 \mathrm{k})\) (B) \(-(1 / 2)(\hat{1}+2 \hat{\jmath}-3 \mathrm{k})\) (C) \((1 / \sqrt{14})(\hat{1}+2 \hat{j}-3 \mathrm{k})\) (D) \((1 / \sqrt{5})(\hat{1}+2 \hat{\jmath}-3 \mathrm{k})\)

The relation between velocity and position of a particle is \(\mathrm{V}=\mathrm{Ax}+\mathrm{B}\) where \(\mathrm{A}\) and \(\mathrm{B}\) are constants. Acceleration of the particle is \(10 \mathrm{~ms}^{-2}\) when its velocity is \(\mathrm{V}\), How much is the acceleration when its velocity is $2 \mathrm{~V}$ (A) \(20 \mathrm{~ms}^{-2}\) (B) \(10 \mathrm{~ms}^{-1}\) (C) \(5 \mathrm{~ms}^{-2}\) (D) 0

\(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) are nonzero vectors. Which from the followings is true ? (A) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)\) (B) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)\) (C) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) (D) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=\mathrm{A}^{2}-\mathrm{B}^{2}\)

Motion of a particle is described by \(\mathrm{x}=(\mathrm{t}-2)^{2}\) Find its velocity when it passes through origin. (A) \(0 \mathrm{~m} / \mathrm{s}\) (B) \(2 \mathrm{~ms}^{-1}\) (C) \(4 \mathrm{~ms}^{-1}\) (D) \(8 \mathrm{~ms}^{-1}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free