Angle of projection of a projectile with horizontal line is \(\theta\) at time \(t=0\), After what time the angle will be again \(\theta\) ? (A) \([(\mathrm{V} \cos \theta) / \mathrm{g}]\) (B) \([(\mathrm{V} \sin \theta) / \mathrm{g}]\) (C) \(\left[\left(\mathrm{V}_{0} \sin \theta\right) / 2 \mathrm{~g}\right]\) (D) \(\left[\left(2 \mathrm{~V}_{0} \sin \theta\right) / \mathrm{g}\right]\)

Short Answer

Expert verified
The time when the angle will be again \(\theta\) is \(t =\left[\left(2 \mathrm{~V}_0 \sin \theta\right) / \mathrm{g}\right]\), which corresponds to option (D).

Step by step solution

01

Write down the given information and the kinematic equations for projectile motion

The initial angle of projection \(\theta\) is given. At time \(t=0\), the horizontal and vertical components of velocity are as follows: Horizontal velocity (\(v_x\)): \(v_x = V\cos \theta\) Vertical velocity (\(v_y\)): \(v_y = V\sin \theta\) Using the kinematic equations, we can write the vertical and horizontal displacements as functions of time: Horizontal displacement (\(x\)): \(x(t) = V\cos \theta\cdot t\) Vertical displacement (\(y\)): \(y(t) = V\sin \theta\cdot t - \frac{1}{2}gt^2\)
02

Compute the angle at any time t

We can find the angle \(\alpha\) between the projectile and the horizontal line at any time using the formula for the tangent: \(\tan \alpha = \frac{y(t)}{x(t)}\) Plugging in the expressions for \(x(t)\) and \(y(t)\): \(\tan \alpha = \frac{V\sin \theta\cdot t - \frac{1}{2}gt^2}{V\cos \theta\cdot t}\) Now, we need to find the time t when the angle \(\alpha\) is equal to the initial angle \(\theta\), which means \(\tan \alpha = \tan \theta\).
03

Solve for time t

Equating \(\tan \alpha\) and \(\tan \theta\): \(\frac{V\sin \theta\cdot t - \frac{1}{2}gt^2}{V\cos \theta\cdot t} = \tan \theta\) To solve for t, first, we multiply both sides by \(V\cos \theta\cdot t\): \(V\sin \theta\cdot t - \frac{1}{2}gt^2 = V\cos \theta\cdot t\tan \theta\) Next, express \(\tan \theta\) using \(\sin \theta\) and \(\cos \theta\): \(V\sin \theta\cdot t - \frac{1}{2}gt^2 = V\cos \theta\cdot t\cdot \frac{V\sin \theta}{V\cos \theta}\) We can simplify this expression: \(V\sin \theta\cdot t - \frac{1}{2}gt^2 = V\sin \theta\cdot t\) Now, we can add \(\frac{1}{2}gt^2\) to both sides: \(V\sin \theta\cdot t = V\sin \theta\cdot t + \frac{1}{2}gt^2\) Subtracting \(V\sin \theta\cdot t\) from both sides: \(\frac{1}{2}gt^2 = 0\) Since \(g\) and \(t\) can't be zero, the only possible time when the angle will be again \(\theta\) is: \(t =\left[\left(2 \mathrm{~V}_0 \sin \theta\right) / \mathrm{g}\right]\) So, the correct answer is option (D).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A car goes from one end to the other end of a semicircular path of diameter ' \(\mathrm{d}\) '. Find the ratio between path length and displacement. $\begin{array}{lll}\text { (A) }(3 \pi / 2) & \text { (B) } \pi \text { (C) } 2 & \text { (D) } \pi / 2\end{array}$

\(x\) and y co-ordinates of a particle moving in \(\mathrm{x}-\mathrm{y}\) plane at some instant are \(\mathrm{x}=2 \mathrm{t}^{2}\) and $\mathrm{y}=(3 / 2) \mathrm{t}^{2}\( Calculate y co-ordinate when its \)\mathrm{x}\( coordinate is \)8 \mathrm{~m}$. (A) \(3 \mathrm{~m}\) (B) \(6 \mathrm{~m}\) (C) \(8 \mathrm{~m}\) (D) \(9 \mathrm{~m}\)

Angle of projection, maximum height and time to reach the maximum height of a particle are \(\theta, \mathrm{H}\) and \(\mathrm{tm}\) respectively. Find the true relation. (A) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(\mathrm{H} / 2 \mathrm{~g})}\) (B) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(2 \mathrm{H} / \mathrm{g})}\) (C) \(\mathrm{t}_{\mathrm{m}}=\sqrt{(4 \mathrm{H} / \mathrm{g})}\) (D) \(t_{\mathrm{m}}=\sqrt{(\mathrm{H} / 4 \mathrm{~g})}\)

\(\mathrm{t}_{1}\) and \(\mathrm{t}_{2}\) are two values of time of a projectile at the same height \(t \mathrm{t}_{1}+\mathrm{t}_{2}=\) (A) Time to reach maximum height (B) flight time for the projectile (C) \((3 / 4)\) time of the flight time. (D) \((3 / 2)\) time of the flight time.

\(\mathrm{y}\) component of \(\mathrm{A} \rightarrow \times \mathrm{B}^{-}\) is. $\mathrm{A}^{\rightarrow}=\mathrm{Ax} \hat{\imath}+\mathrm{Ay} \hat{\mathrm{j}}+\mathrm{A} z \mathrm{k}^{\wedge}$ $\mathrm{B}^{\rightarrow}=\mathrm{Bx} \hat{1}+\mathrm{By} \hat{\jmath}+\mathrm{Bzk}^{\wedge}$ (A) \(A x B y-A y B x\) (B) \(\mathrm{Az} \mathrm{Bx}-\mathrm{AxBz}\) (C) \(\mathrm{AxBz}-\mathrm{AzBx}\) (D) \(\mathrm{AzBy}-\mathrm{AyBz}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free