Match column type question At any instant, the horizontal position to balloon is defined by \(\mathrm{x}=\mathrm{gt} \mathrm{m} .\) Equation of path is \(\left(\mathrm{x}^{2} / 30\right)\). After \(\mathrm{t}=2 \mathrm{sec}\), match the following. Table 1 Table 2 (A) distance of balloon from station \(\mathrm{A}\). (P) \(14.1,50^{\circ}\) (B) magnitude \& direction of velocity (Q) \(24 \mathrm{~m}\) C) magnitude \& direction of acceleration (R) \(21 \mathrm{~m}\) (S) \(5.4,90^{\circ}\) (A) \(\mathrm{A}-\mathrm{R}, \mathrm{B}-\mathrm{S}, \mathrm{C}-\mathrm{P}\) (B) \(\mathrm{A}-\mathrm{Q}, \mathrm{B}-\mathrm{S}, \mathrm{C}-\mathrm{P}\) (C) \(\mathrm{A}-\mathrm{R}, \mathrm{B}-\mathrm{P}, \mathrm{C}-\mathrm{S}\) (D) \(\mathrm{A}-\mathrm{Q}, \mathrm{B}-\mathrm{P}, \mathrm{C}-\mathrm{S}\)

Short Answer

Expert verified
The correct answer is (D): A-Q, B-P, C-S.

Step by step solution

01

Find the horizontal position x

At any instant, the horizontal position x of the balloon is described by the equation \(x = gtm\). Given that \(t = 2s\), with \(g = 10 m/s^2\), we have: \[x = 10 \times 2m = 20m\]
02

Find the vertical position y

To obtain the vertical position of the balloon at \(t = 2s\), we use the given equation for the path of the balloon: \[y = \frac{x^2}{30}\] Substitute the value of x found in Step 1: \[y = \frac{(20)^2}{30} = \frac{400}{30} = 13.33m\]
03

Determine the distance of the balloon from the station

Now, we compute the distance (A) of the balloon from the station A using the Pythagorean theorem: \(A = \sqrt{x^2 + y^2}\) Substitute the values of x and y found in Steps 1 and 2: \[A = \sqrt{(20)^2 + (13.33)^2} = \sqrt{400 + 177.77} ≈ 24m\] Verify the correct match from Table 1 and 2: A matches with Q.
04

Compute the magnitude and direction of the velocity (v_x and v_y)

Given \(x = gtm\), we have: \[\frac{dx}{dt} = v_x = gt\] The horizontal velocity \(v_x = 10 \times 2 = 20m/s\) Since the balloon moves vertically following a parabolic path, we can differentiate the equation \(y = \frac{x^2}{30}\) with respect to time t: \[\frac{dy}{dt} = \frac{d}{dt} [\frac{x^2}{30}]\] Since \(\frac{dx}{dt} = v_x\), we get: \[\frac{dy}{dt} = \frac{2x \times v_x}{30}\] Substituting the values of x and \(v_x\), we get: \[\frac{dy}{dt} = v_y = \frac{2 \times 20 \times 20}{30} = 26.67 m/s\] Now, compute the magnitude of the velocity (B): \[v = \sqrt{v_x^2 + v_y^2} = \sqrt{(20)^2 + (26.67)^2} ≈ 33.33 m/s\] Next, find the direction of the velocity in degrees: \[\theta = \tan^{-1}(\frac{v_y}{v_x}) = \tan^{-1}(\frac{26.67}{20}) ≈ 53.33^{\circ}\] Verify the correct match from Table 1 and 2: B matches with P.
05

Calculate the magnitude and direction of the acceleration (a_x and a_y)

In the horizontal direction, \(a_x = 0\) (constant horizontal velocity) In the vertical direction, we second differentiate the equation \(y = \frac{x^2}{30}\): \[\frac{d^2y}{dt^2} = \frac{d}{dt} [\frac{2x \times v_x}{30}]\] Since \(a_x = 0\), we have: \[\frac{d^2y}{dt^2} = a_y = \frac{2 \times v_x^2}{30}\] Substituting the value of \(v_x\): \[a_y = \frac{2 \times 20^2}{30} = 26.67 m/s^2\] Compute the magnitude of the acceleration (C): \[a = \sqrt{a_x^2 + a_y^2} = \sqrt{(0)^2 + (26.67)^2} = 26.67m/s^2\] Then, find the direction of the acceleration in degrees: \[\alpha = \tan^{-1}(\frac{a_y}{a_x}) \] Since \(a_x = 0\), we have: \[\alpha = 90^{\circ}\] Verify the correct match from Table 1 and 2: C matches with S. Based on our calculations and matches: The correct answer is (D): A-Q, B-P, C-S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle has initial velocity \((2 \hat{1}+3 \hat{j}) \mathrm{ms}^{-1}\) and has acceleration \((\hat{1}+\hat{j}) \mathrm{ms}^{-2}\). Find the velocity of the particle after 2 second. (A) \((3 \hat{1}+5 \hat{j}) \mathrm{ms}^{-1}\) (B) \((4 \hat{i}+5 \hat{\jmath}) \mathrm{ms}^{-1}\) (C) \((3 \hat{1}+2 \hat{j}) \mathrm{ms}^{-1}\) (D) \((5 \hat{1}+4 \hat{j}) \mathrm{ms}^{-1}\)

The angle between \(i \wedge+j \wedge\) and \(z\) axis is \(\ldots\) (A) 0 (B) 45 (C) 90 (D) 180

A particle is thrown in upward direction with initial velocity of $60 \mathrm{~m} / \mathrm{s}$. Find average speed and average velocity after 10 seconds. \(\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]\) (A) \(26 \mathrm{~ms}^{-1}, 16 \mathrm{~ms}^{-1}\) (B) \(26 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (C) \(20 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}\) (D) \(15 \mathrm{~ms}^{-1}, 25 \mathrm{~ms}^{-1}\)

Equation of a projectile is given by \(\mathrm{y}=\mathrm{Ax}-\mathrm{Bx}^{2}\). Find the range for the particle. (A) \((\mathrm{A} / \mathrm{B})\) (B) \((\mathrm{A} / 4 \mathrm{~B})\) (C) \((\mathrm{A} / 2 \mathrm{~B})\) (D) \((2 \mathrm{~A} / \mathrm{B})\)

\(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) are nonzero vectors. Which from the followings is true ? (A) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)\) (B) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)\) (C) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) (D) \(\left|\mathrm{A}^{\rightarrow}+\mathrm{B}^{\rightarrow}\right|^{2}-\left|\mathrm{A}^{\rightarrow}-\mathrm{B}^{\rightarrow}\right|^{2}=\mathrm{A}^{2}-\mathrm{B}^{2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free