Chapter 21: Problem 2762
What is the least count of commonly available vernier? (A) \(0.01 \mathrm{~cm}\) (B) \(0.001 \mathrm{~cm}\) (C) \(0.0001 \mathrm{~cm}\) (D) \(0.1 \mathrm{~cm}\)
Chapter 21: Problem 2762
What is the least count of commonly available vernier? (A) \(0.01 \mathrm{~cm}\) (B) \(0.001 \mathrm{~cm}\) (C) \(0.0001 \mathrm{~cm}\) (D) \(0.1 \mathrm{~cm}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf observed reading is OR, corrected reading is CR, zero error in \(\mathrm{ZE}\) and zero correction in \(\mathrm{ZC}\), then what will be the possibility? (A) \(\mathrm{CR}=\mathrm{OR}+\mathrm{ZC}\) and \(\mathrm{ZE}=\mathrm{CR}-\mathrm{OR}\) (B) \(\mathrm{CR}=\mathrm{OR}+\mathrm{ZE}\) and \(\mathrm{ZC}=\mathrm{CR}-\mathrm{OR}\) (C) \(\mathrm{CR}=\mathrm{OR}-\mathrm{ZC}\) and \(\mathrm{ZE}=\mathrm{OR}-\mathrm{CR}\) (D) \(\mathrm{CR}=\mathrm{OR}-\mathrm{ZE}\) and \(\mathrm{ZC}=\mathrm{CR}-\mathrm{OR}\)
What is the least count of the vernier calipers? (A) Smallest division on the vernier scale. (B) difference of the smallest division on the main scale and the smallest division on the vernier scale. (C) sum of the smallest division on the main scale and the smallest division on the vernier scale. (D) smallest division on the main scale.
When the zero mark on the vernier scale lies towards the left side of the zero mark of the main scale, when the jaws are connect, then what will be the zero error? (A) zero error is positive (B) zero error is negative (C) zero correction is positive (D) zero error does not exist
In an usual vernier, 10 vernier scale divisions, coin side with 8 main scale divisions, then what is the least count of the vernier? (A) \(0.1 \mathrm{~mm}\) (B) \(0.2 \mathrm{~mm}\) (C) \(0.8 \mathrm{~mm}\) (D) \((1 / 8) \mathrm{mm}\)
In an unusual vernier, 9 vernier scale divisions coincide with 8 main scale division, then what is the least count of the vernier? (A) \((8 / 9) \mathrm{mm}\) (B) \((1 / 9) \mathrm{mm}\) (C) \((1 / 17) \mathrm{mm}\) (D) \((1 / 8) \mathrm{mm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.