Chapter 3: Problem 329
Formula for true force is (A) \(\mathrm{F}=\mathrm{ma}\) (B) \(\mathrm{F}=[\\{\mathrm{d}(\mathrm{mv})\\} / \mathrm{dt}]\) (C) \(\mathrm{F}=\mathrm{m}(\mathrm{dv} / \mathrm{dt})\) (D) \(F=m\left(d^{2} x / d t^{2}\right)\)
Chapter 3: Problem 329
Formula for true force is (A) \(\mathrm{F}=\mathrm{ma}\) (B) \(\mathrm{F}=[\\{\mathrm{d}(\mathrm{mv})\\} / \mathrm{dt}]\) (C) \(\mathrm{F}=\mathrm{m}(\mathrm{dv} / \mathrm{dt})\) (D) \(F=m\left(d^{2} x / d t^{2}\right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA body of mass \(5 \mathrm{~kg}\) starts from the origin with an initial velocity \(u^{\rightarrow}=30 \mathrm{i}+40 \mathrm{j} \mathrm{ms}^{-1}\). If a constant Force $\underline{F}=-\left(\mathrm{i}^{\wedge}+5 \mathrm{j}\right) \mathrm{N}$ acts on the body, the time in which the y-component of the velocity becomes zero is (A) \(5 \mathrm{~s}\) (B) \(20 \mathrm{~s}\) (C) \(40 \mathrm{~s}\) (D) \(80 \mathrm{~s}\)
A \(0.5 \mathrm{~kg}\) ball moving with a speed of \(12 \mathrm{~ms}^{-1}\) strikes a hard wall at an angle of \(30^{\circ}\) with the wall. It is reflected with the same speed and at the same angle. If the ball is in contact with the wall for \(0.25 \mathrm{~S}\) the average force acting on the wall is (A) \(96 \mathrm{~N}\) (B) \(48 \mathrm{~N}\) (C) \(24 \mathrm{~N}\) (D) \(12 \mathrm{~N}\)
With what acceleration (a) should a box descend so that a block of mass \(\mathrm{M}\) placed in it exerts a force \((\mathrm{Mg} / 4)\) on the floor of the box? (A) \((4 \mathrm{~g} / 3)\) (B) \((3 \mathrm{~g} / 4)\) (C) \(\mathrm{g} / 4\) (D) \(3 \mathrm{~g}\)
A wagon weighing \(1000 \mathrm{~kg}\) is moving with a velocity $50 \mathrm{~km} \mathrm{~h}^{-1}\( on smooth horizontal rails. A mass of \)250 \mathrm{~kg}$ is dropped into it. The velocity with which it moves now is (A) \(2.5 \mathrm{~km} \mathrm{~h}^{-1}\) (B) \(20 \mathrm{~km} \mathrm{~h}^{-1}\) (C) \(40 \mathrm{~km} \mathrm{~h}^{-1}\) (D) \(50 \mathrm{~km} \mathrm{~h}^{-1}\)
A given object takes n times more time to slide down \(45^{\circ}\) rough inclined plane as it takes to slide down a perfectly smooth \(45^{\circ}\) incline. The coefficient of kinetic friction between the object and the incline is (A) \(\left[1 /\left(2-\mathrm{n}^{2}\right)\right]\) (B) \(\left[1-\left(1 / \mathrm{n}^{2}\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.