A wagon weighing \(1000 \mathrm{~kg}\) is moving with a velocity $50 \mathrm{~km} \mathrm{~h}^{-1}\( on smooth horizontal rails. A mass of \)250 \mathrm{~kg}$ is dropped into it. The velocity with which it moves now is (A) \(2.5 \mathrm{~km} \mathrm{~h}^{-1}\) (B) \(20 \mathrm{~km} \mathrm{~h}^{-1}\) (C) \(40 \mathrm{~km} \mathrm{~h}^{-1}\) (D) \(50 \mathrm{~km} \mathrm{~h}^{-1}\)

Short Answer

Expert verified
The correct answer is (C) \(40\mathrm{~km} \mathrm{~h}^{-1}\).

Step by step solution

01

Calculate the initial momentum of the wagon

To do this, we need to first convert the velocity of the wagon from \(\mathrm{km} \mathrm{~h}^{-1}\) to \(\mathrm{m} \mathrm{~s}^{-1}\). Using the conversion factor \(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\) and \(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\), we convert the velocity: Initial velocity of the wagon \(=\frac{50 \cdot \frac{1000}{1} \mathrm{~m} \mathrm{~km}^{-1} \cdot \frac{1}{3600} \mathrm{~h} \mathrm{~s}^{-1}}{\mathrm{~km} \mathrm{~h}^{-1}} = 13.89\mathrm{~m}\mathrm{~s}^{-1}\) Now we can find the initial momentum of the wagon: Initial momentum \(=\) mass \(\times\) initial velocity \(= 1000\mathrm{~kg} \times 13.89\mathrm{~m}\mathrm{~s}^{-1} = 13,890\mathrm{~kg}\mathrm{~m}\mathrm{~s}^{-1}\)
02

Calculate the final momentum of the system

When the mass is dropped into the wagon, the combined mass becomes the sum of the initial mass of the wagon and the dropped mass: Final mass \(=\) initial mass \(+\) dropped mass \(=1000\mathrm{~kg}+250\mathrm{~kg} = 1250\mathrm{~kg}\) Since momentum is conserved during this process, the final momentum of the system will be equal to the initial momentum of the wagon. Final momentum \(= 13,890\mathrm{~kg}\mathrm{~m}\mathrm{~s}^{-1}\)
03

Calculate the final velocity of the system

To find the final velocity of the system, we use the following formula: Final velocity \(=\frac{\text{Final Momentum}}{\text{Final Mass}}\) Substituting the values we found earlier: Final velocity \(=\frac{13,890\mathrm{~kg}\mathrm{~m}\mathrm{~s}^{-1}}{1250\mathrm{~kg}} = 11.11\mathrm{~m}\mathrm{~s}^{-1}\) Now convert the final velocity back to \(\mathrm{km} \mathrm{~h}^{-1}\): \(\frac{11.11 \cdot 3600}{1000}\mathrm{~km} \mathrm{~h}^{-1}=40\mathrm{~km} \mathrm{~h}^{-1}\) So the final velocity of the wagon after the mass is dropped is \(40\mathrm{~km} \mathrm{~h}^{-1}\). Therefore, the correct answer is (C) \(40\mathrm{~km} \mathrm{~h}^{-1}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A block of mass \(4 \mathrm{~kg}\) is placed on a rough horizontal plane. A time dependent force \(\mathrm{F}=\mathrm{Kt}^{2}\) acts on a block, where \(\mathrm{k}=2 \mathrm{~N} / \mathrm{s}^{2}\), co-efficient of friction \(\mu=0.8\). Force of friction between the block and the plane at $\mathrm{t}=2 \mathrm{~S}$ is.... (A) \(32 \mathrm{~N}\) (B) \(4 \mathrm{~N}\) (C) \(2 \mathrm{~N}\) (D) \(8 \mathrm{~N}\)

An impulsive force of \(100 \mathrm{~N}\) acts on a body for \(1 \mathrm{sec}\) What is the change in its linear momentum ? (A) \(10 \mathrm{~N}-\mathrm{S}\) (B) \(100 \mathrm{~N}-\mathrm{S}\) (C) \(1000 \mathrm{~N}-\mathrm{S}\) (D) \(1 \mathrm{~N}-\mathrm{S}\)

A \(7 \mathrm{~kg}\) object is subjected to two forces (in newton) \(\underline{F}_{1}=20 \mathrm{i}^{-}+30 \mathrm{j}^{-}\) and \(\underline{\mathrm{F}}_{2}=8 \mathrm{i}^{-}-5 \mathrm{j}\) `The magnitude of resulting acceleration in \(\mathrm{ms}^{-2}\) will be (A) 5 (B) 4 (C) 3 (D) 2

A given object takes n times more time to slide down \(45^{\circ}\) rough inclined plane as it takes to slide down a perfectly smooth \(45^{\circ}\) incline. The coefficient of kinetic friction between the object and the incline is (A) \(\left[1 /\left(2-\mathrm{n}^{2}\right)\right]\) (B) \(\left[1-\left(1 / \mathrm{n}^{2}\right)\right]\)

A Particle moves in the X-Y plane under the influence of a force such that its linear momentum is $\mathrm{P}^{-}(\mathrm{t})=\mathrm{A}[\mathrm{i} \cos (\mathrm{kt})-\mathrm{j} \sin (\mathrm{kt})]\( where \)\mathrm{A}$ and \(\mathrm{k}\) are constants. The angle between the force and momentum is (A) \(0^{\circ}\) (B) \(30^{\circ}\) (C) \(45^{\circ}\) (D) \(90^{\circ}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free