Chapter 4: Problem 469
If the K.E. of a body is increased by \(44 \%\), its momentum will increase by....... (A) \(20 \%\) (B) \(22 \%\) (C) \(2 \%\) (D) \(120 \%\)
Chapter 4: Problem 469
If the K.E. of a body is increased by \(44 \%\), its momentum will increase by....... (A) \(20 \%\) (B) \(22 \%\) (C) \(2 \%\) (D) \(120 \%\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe decreases in the potential energy of a ball of mass \(25 \mathrm{~kg}\) which falls from a height of \(40 \mathrm{~cm}\) is (A) \(968 \mathrm{~J}\) (B) \(100 \mathrm{~J}\) (C) \(1980 \mathrm{~J}\) (D) \(200 \mathrm{~J}\)
A body having a mass of \(0.5 \mathrm{~kg}\) slips along the wall of a semispherical smooth surface of radius \(20 \mathrm{~cm}\) shown in figure. What is the velocity of body at the bottom of the surface $?\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ (A) \(2 \mathrm{~m} / \mathrm{s}\) (B) \(2 \mathrm{~m} / \mathrm{s}\) (C) \(2 \sqrt{2} \mathrm{~m} / \mathrm{s}\) (D) \(4 \mathrm{~m} / \mathrm{s}\)
An electric motor develops \(5 \mathrm{KW}\) of power. How much time will it take to lift a water of mass \(100 \mathrm{~kg}\) to a height of $20 \mathrm{~m}\( ? \)\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ (A) \(4 \mathrm{sec}\) (B) \(5 \mathrm{sec}\) (C) \(8 \mathrm{sec}\) (D) \(10 \mathrm{sec}\)
A bullet of mass \(\mathrm{m}\) moving with velocity \(\mathrm{v}\) strikes a block of mass \(\mathrm{M}\) at rest and gets embedded into it. The kinetic energy of the composite block will be (A) \((1 / 2) \mathrm{mv}^{2} \times[\mathrm{M} /(\mathrm{m}+\mathrm{m})]\) (B) \((1 / 2) \mathrm{mv}^{2} \times[(\mathrm{m}+\mathrm{m}) / \mathrm{M}]\) (C) \((1 / 2) \mathrm{MV}^{2} \times[\mathrm{m} /(\mathrm{m}+\mathrm{M})]\) (D) \((1 / 2) \mathrm{mv}^{2} \times[\mathrm{m} /(\mathrm{m}+\mathrm{M})]\)
A sphere collides with another sphere of identical mass. After collision, the two sphere move. The collision is inelastic. Then the angle between the directions of the two spheres is (A) Different from \(90^{\circ}\) (B) \(90^{\circ}\) (C) \(0^{\circ}\) (D) \(45^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.