Two bodies of mass \(1 \mathrm{~kg}\) and \(3 \mathrm{~kg}\) have position vector \((\mathrm{i} \wedge+2 \mathrm{j} \wedge+\mathrm{k} \wedge)\) and $(-3 \mathrm{i}-2 \mathrm{j}+\mathrm{k})$ respectively the centre of mass of this system has a position vector ..... \(\\{\mathrm{A}\\}-2 \mathrm{i} \wedge+2 \mathrm{k} \wedge\) \(\\{B\\}-2 i \wedge-j \wedge+k \wedge\) \(\\{C\\} 2 i \wedge-j \wedge-k \wedge\) \(\\{\mathrm{D}\\}-\mathrm{i} \wedge+\mathrm{j} \wedge+\mathrm{k} \wedge\)

Short Answer

Expert verified
The position vector of the center of mass of this system is \(-2 i \wedge-j \wedge+k \wedge\).

Step by step solution

01

Write down the given information

We have: - Masses: \(m_1 = 1 \mathrm{~kg}\) and \(m_2 = 3 \mathrm{~kg}\) - Position vectors: \(\vec{r}_1 = (\mathrm{i} \wedge+2 \mathrm{j} \wedge+\mathrm{k} \wedge)\) and \(\vec{r}_2 = (-3\mathrm{i}-2 \mathrm{j}+\mathrm{k})\)
02

Calculate the center of mass position vector

Using the formula for the center of mass position vector, we have: $$\vec{R}_{\mathrm{cm}} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$ Substitute the given values into the formula: $$\vec{R}_{\mathrm{cm}} = \frac{1(\mathrm{i} \wedge+2 \mathrm{j} \wedge+\mathrm{k} \wedge) + 3(-3\mathrm{i}-2 \mathrm{j}+\mathrm{k})}{1+3}$$
03

Simplify the position vector

Now, perform the necessary operations: $$\vec{R}_{\mathrm{cm}} = \frac{1\,\mathrm{i} + 2\,\mathrm{j} + \mathrm{k} - 9\,\mathrm{i} - 6\,\mathrm{j} + 3\,\mathrm{k}}{4}$$ Combine the like terms: $$\vec{R}_{\mathrm{cm}} = \frac{-8\,\mathrm{i} - 4\,\mathrm{j} + 4\,\mathrm{k}}{4}$$ Divide each term by the denominator (4): $$\vec{R}_{\mathrm{cm}} = -2\,\mathrm{i} - \mathrm{j} + \mathrm{k}$$
04

Compare to the given options

We now compare our result to the given options: A) \(-2 \mathrm{i} \wedge+2 \mathrm{k} \wedge\) B) \(-2 i \wedge-j \wedge+k \wedge\) C) \(2 i \wedge-j \wedge-k \wedge\) D) \(-\mathrm{i} \wedge+\mathrm{j} \wedge+\mathrm{k} \wedge\) Our result matches option B: $$\vec{R}_{\mathrm{cm}} = -2 i \wedge-j \wedge+k \wedge$$ So, the position vector of the center of mass of this system is given by option B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wheel having moment of inertia \(2 \mathrm{~kg} \mathrm{M}^{2}\) about its vertical axis, rotates at the rate of 60 rpm about this axis. The torque which can stop the wheels rotation in one minute will be.. \(\\{\mathrm{A}\\}(\pi / 15) \mathrm{N}-\mathrm{m}\) \(\\{\mathrm{B}\\}(\pi / 18) \mathrm{N}-\mathrm{m}\) \(\\{\mathrm{C}\\}(2 \pi / 15) \mathrm{N}-\mathrm{m}\) \(\\{\mathrm{D}\\}(\pi / 12) \mathrm{N}-\mathrm{m}\)

A gramophone record of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) is rotating with angular speed \(\mathrm{W}\). If two pieces of wax each of mass \(\mathrm{M}\) are kept on it at a distance of \(R / 2\) from the centre on opposite side then the new angular velocity will be..... \(\\{\mathrm{A}\\}(\omega / 2)\) \(\\{B\\}[m \omega /(M+m)\) \(\\{C\\}[M \omega /(M+m)]\) \(\\{\mathrm{D}\\}[(\mathrm{M}+\mathrm{m}) / \mathrm{M} \omega]\)

Match list I with list II and select the correct answer $$ \begin{aligned} &\begin{array}{|l|l|} \hline \text { List-I } & \begin{array}{l} \text { List - II } \\ \text { System } \end{array} & \text { Moment of inertia } \\ \hline \text { (x) A ring about it axis } & \text { (1) }\left(\mathrm{MR}^{2} / 2\right) \\ \hline \text { (y) A uniform circular disc about it axis } & \text { (2) }(2 / 5) \mathrm{MR}^{2} \\ \hline \text { (z) A solid sphere about any diameter } & \text { (3) }(7 / 5) \mathrm{MR}^{2} \\ \hline \text { (w) A solid sphere about any tangent } & \text { (4) } \mathrm{MR}^{2} \\ \cline { 2 } & \text { (5) }(9 / 5) \mathrm{MR}^{2} \\ \hline \end{array}\\\ &\text { Select correct option }\\\ &\begin{array}{|l|l|l|l|l|} \hline \text { Option? } & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{W} \\\ \hline\\{\mathrm{A}\\} & 2 & 1 & 3 & 4 \\ \hline\\{\mathrm{B}\\} & 4 & 3 & 2 & 5 \\ \hline\\{\mathrm{C}\\} & 1 & 5 & 4 & 3 \\ \hline\\{\mathrm{D}\\} & 4 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned} $$

A meter stick of mass \(400 \mathrm{gm}\) is pivoted at one end and displaced through an angle 600 the increase in its P.E. is \(\overline{\\{\mathrm{A}\\} 2}\) \(\\{B\\} 3\) \(\\{\) C \(\\}\) Zero \(\\{\mathrm{D}\\} 1\)

Two blocks of masses \(10 \mathrm{~kg}\) an \(4 \mathrm{~kg}\) are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives velocity of \(14 \mathrm{~m} / \mathrm{s}\) to the heavier block in the direction of the lighter block. The velocity of the centre of mass is : \(\\{\mathrm{A}\\} 30 \mathrm{~m} / \mathrm{s}\) \(\\{\mathrm{B}\\} 20 \mathrm{~m} / \mathrm{s}\) \(\\{\mathrm{C}\\} 10 \mathrm{~m} / \mathrm{s}\) \(\\{\mathrm{D}\\} 5 \mathrm{~m} / \mathrm{s}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free