Chapter 6: Problem 670
The atmosphere is held to the earth by (A) clouds (B) Gravity (C) Winds (D) None of the above
Chapter 6: Problem 670
The atmosphere is held to the earth by (A) clouds (B) Gravity (C) Winds (D) None of the above
All the tools & learning materials you need for study success - in one app.
Get started for freeOn the surface of earth acceleration due to gravity is \(\mathrm{g}\) and gravitational potential is \(\mathrm{V}\) match the followingTable - 1 Table \(-2\) (A) At height \(\mathrm{h}=\mathrm{R}\) value of \(\mathrm{g}\) (P) decrease by a factor \((1 / 4)\) (B) At depth \(\mathrm{h}=(\mathrm{R} / 2)\) (Q) decrease by a factor \((1 / 2)\) (C) At height \(\mathrm{h}=\mathrm{R}\) value of \(\mathrm{v}\) (R) increase by a factor \((11 / 8)\) (D) At depth \(\mathrm{h}=(\mathrm{R} / 2)\) value of \(\mathrm{v}\) (S) increase by a factor 2 (T) None
A planet moving along an elliptical orbit is closest to the sun at a distance \(\mathrm{r}_{1}\) and farthest away at a distance of \(\mathrm{r}_{2}\). If \(\mathrm{v}_{1}\) and \(\mathrm{v}_{2}\) are the liner velocities at these points respectively, then the ratio \(\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)\) is \(\ldots \ldots \ldots \ldots\) (A) \(\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)\) (B) \(\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)^{2}\) (C) \(\left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)\) (D) \(\left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)^{2}\)
Two satellites \(\mathrm{A}\) and \(\mathrm{B}\) go round a planet in circular orbits having radii \(4 \mathrm{R}\) and \(\mathrm{R}\) respectively If the speed of satellite \(\mathrm{A}\) is \(3 \mathrm{v}\), then speed of satellite \(\mathrm{B}\) is (A) \((3 \mathrm{v} / 2)\) (B) \((4 \mathrm{v} / 2)\) (C) \(6 \mathrm{v}\) (D) \(12 \mathrm{v}\)
The mass and radius of the sun are \(1.99 \times 10^{30} \mathrm{~kg}\) and \(\mathrm{R}=6.96 \times 10^{8} \mathrm{~m}\). The escape velocity of rocket from the sun \(\mathrm{is}=\ldots \ldots \ldots \mathrm{km} / \mathrm{sec}\) $\begin{array}{llll}\text { (A } 11.2 & \text { (B) } 12.38 & \text { (C) } 59.5 & \text { (D) } 618\end{array}$
Escape velocity on the surface of earth is \(11.2 \mathrm{kms}^{-1}\) Escape velocity from a planet whose masses the same as that of earth and radius $1 / 4\( that of earth is \)=\ldots \ldots \ldots \mathrm{kms}^{-1}$ (A) \(2.8\) (B) \(15.6\) (C) \(22.4\) (D) \(44.8\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.