When a particle is projected from the surface of earth, it mechanical energy
and angular momentum about center of earth at all time is constant
(i) A particle of mass \(\mathrm{m}\) is projected from the surface of earth
with velocity \(\mathrm{V}_{0}\) at angle \(\theta\) with horizontal suppose
\(\mathrm{h}\) be the maximum height of particle from surface of earth and
\(\mathrm{v}\) its speed at that point them \(\mathrm{V}\) is
(A) \(\mathrm{V}_{0} \cos \theta\)
\((\mathrm{B})>\mathrm{V}_{0} \cos \theta\)
(C) \(<\mathrm{V}_{0} \cos \theta\)
(D) zero
(ii) Maximum height h of the particle is
$(\mathrm{A})=\left[\left(\mathrm{V}_{0}^{2} \sin ^{2} \theta\right) / 2
\mathrm{~g}\right]$
(B) $>\left[\left(\mathrm{V}_{0}^{2} \sin ^{2} \theta\right) / 2
\mathrm{~g}\right]$
$(\mathrm{C})<\left[\left(\mathrm{V}_{0}^{2} \sin ^{2} \theta\right) / 2
\mathrm{~g}\right]$
(D) can be greater than or less than $\left[\left(\mathrm{V}_{0}^{2} \sin ^{2}
\theta\right) / 2 \mathrm{~g}\right]$