Chapter 6: Problem 700
A body weight \(500 \mathrm{~N}\) on the surface of the earth. How much would it weight half way below the surface of earth (A) \(125 \mathrm{~N}\) (B) \(250 \mathrm{~N}\) (C) \(500 \mathrm{~N}\) (D) \(1000 \mathrm{~N}\)
Chapter 6: Problem 700
A body weight \(500 \mathrm{~N}\) on the surface of the earth. How much would it weight half way below the surface of earth (A) \(125 \mathrm{~N}\) (B) \(250 \mathrm{~N}\) (C) \(500 \mathrm{~N}\) (D) \(1000 \mathrm{~N}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe additional K.E. to be provided to a satellite of mass \(\mathrm{m}\) revolving around a planet of mass \(\mathrm{M}\), to transfer it from a circular orbit of radius \(\mathrm{R}_{1}\) to another radius \(\mathrm{R}_{2}\left(\mathrm{R}_{2}>\mathrm{R}_{1}\right)\) is (A) $\operatorname{GMm}\left[\left(1 / R_{1}^{2}\right)-\left(1 / R_{2}^{2}\right)\right]$ \(\operatorname{GMm}\left[\left(1 / R_{1}\right)-\left(1 / R_{2}\right)\right]\) (C) $2 \mathrm{GMm}\left[\left(1 / \mathrm{R}_{1}\right)-\left(1 / \mathrm{R}_{2}\right)\right]$ (D) $(1 / 2) \mathrm{GMm}\left[\left(1 / \mathrm{R}_{1}\right)-\left(1 / \mathrm{R}_{2}\right)\right]$
The acceleration due to gravity near the surface of a planet of radius \(\mathrm{R}\) and density \(\mathrm{d}\) is proportional to (A) \(\mathrm{d} / \mathrm{R}^{2}\) (B) \(\mathrm{d} \mathrm{R}^{2}\) (C) \(\mathrm{dR}\) (D) \(\mathrm{d} / \mathrm{R}\)
A satellite of mass \(\mathrm{m}\) is orbiting close to the surface of the earth (Radius \(\mathrm{R}=6400 \mathrm{~km}\) ) has a K.E. \(\mathrm{K}\). The corresponding \(\mathrm{K} . \mathrm{E}\). of satellite to escape from the earth's gravitational field is (A) \(\mathrm{K}\) (B) \(2 \mathrm{~K}\) (C) \(\mathrm{mg} \mathrm{R}\) (D) \(\mathrm{m} \mathrm{K}\)
The moon's radius is \(1 / 4\) that of earth and its mass is \(1 / 80\) times that of the earth. If g represents the acceleration due to gravity on the surface of earth, that on the surface of the moon is (A) \(g / 4\) (B) \(\mathrm{g} / 5\) (c) \(\mathrm{g} / 6\) (D) \(\mathrm{g} / 8\)
Two bodies of masses \(m_{1}\) and \(m_{2}\) are initially at rest at infinite distance apart. They are then allowed to move towards each other under mutual a gravitational attraction Their relative velocity of approach at separation distance \(\mathrm{r}\) between them is (A) $\left[\left\\{2 \mathrm{G}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)\right\\} / \mathrm{r}\right]^{-1 / 2}$ (B) $\left[\left\\{2 \mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)\right\\} / \mathrm{r}\right]^{1 / 2}$ (C) $\left[\mathrm{r} /\left\\{2 \mathrm{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)\right\\} / \mathrm{r}\right]^{1 / 2}$ (D) $\left[\left(2 \mathrm{Gm}_{1} \mathrm{~m}_{2}\right) / \mathrm{r}\right]^{1 / 2}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.