Chapter 8: Problem 1118
If heat given to a system is \(6 \mathrm{k}\) cal and work done is $6 \mathrm{kj}$. The change in internal energy is ......... KJ. (A) \(12.4\) (B) 25 (C) \(19.1\) (D) 0
Chapter 8: Problem 1118
If heat given to a system is \(6 \mathrm{k}\) cal and work done is $6 \mathrm{kj}$. The change in internal energy is ......... KJ. (A) \(12.4\) (B) 25 (C) \(19.1\) (D) 0
All the tools & learning materials you need for study success - in one app.
Get started for free
In Column I different Process is given match corresponding option of column \(\mathrm{I}_{1}\) Column - I Columm - II (A) adiabatic process (p) \(\Delta \mathrm{p}=0\) (B) Isobaric process (q) \(\Delta \mathrm{u}=0\) (C) Isochroic process (r) \(\Delta Q=0\) (D) Isothermal process (s) \(\Delta \mathrm{W}=0\) (A) A-p, B-s, C-r, D-q (B) (B) A-s, B-q, C-p, D-r (C) $\mathrm{A}-\mathrm{r}, \mathrm{B}-\mathrm{p}, \mathrm{C}-\mathrm{s}, \mathrm{D}-\mathrm{q}$ (D) $\mathrm{A}-\mathrm{q}, \mathrm{B}-\mathrm{r}, \mathrm{C}-\mathrm{q}, \mathrm{D}-\mathrm{p}$
A System under goes a Cyclic Process in which it absorbs \(\mathrm{Q}_{1}\) heat and gives out \(\mathrm{Q}_{2}\) heat. The efficiency of the Process \(\eta\) and the work done is \(\mathrm{W}\). Which formula is wrong ? is (A) \(\mathrm{W}=\mathrm{Q}_{1}-\mathrm{Q}_{2}\) (B) \(\eta=\left(\mathrm{Q}_{2} / \mathrm{Q}_{1}\right)\) (C) \(\eta=\left(\mathrm{W} / \mathrm{Q}_{1}\right)\) (D) \(\eta=1-\left(\mathrm{Q}_{2} / \mathrm{Q}_{1}\right)\)
If a quantity of heat \(1163.4 \mathrm{~J}\) is supplied to one mole of nitrogen gas, at room temperature at constant pressure, then the rise in temperature is \(\mathrm{R}=8.31\\{\mathrm{~J} /(\mathrm{m} \cdot 1 . \mathrm{k})\\}\) (A) \(28 \mathrm{~K}\) (B) \(65 \mathrm{~K}\) (C) \(54 \mathrm{~K}\) (D) \(40 \mathrm{~K}\)
For an isothermal expansion of a Perfect gas, the value of $(\Delta \mathrm{P} / \mathrm{P})$ is equal to (A) \(-\gamma^{(1 / 2)}\\{(\Delta \mathrm{V}) / \mathrm{V}\\}\) (B) \(-\gamma\\{(\Delta \mathrm{V}) / \mathrm{V}\\}\) (C) \(-\gamma^{2}\\{(\Delta \mathrm{V}) / \mathrm{V}\\}\) \((\mathrm{D})-(\Delta \mathrm{V} / \mathrm{V})\)
One mole of an ideal gas $\left(\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right)=\gamma$ at absolute temperature \(\mathrm{T}_{1}\) is adiabatically compressed from an initial pressure \(\mathrm{P}_{1}\) to a final pressure \(\mathrm{P}_{2}\) The resulting temperature \(\mathrm{T}_{2}\) of the gas is given by. (A) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\\{\gamma /(\gamma-1)\\}}$ (B) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\\{(\gamma-1) / \gamma\\}}$ (C) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\gamma}$ (D) $\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\gamma-1}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.