Chapter 8: Problem 1120
Which of the following is not a thermodynamical function. (A) Enthalpy (B) Work done (C) Gibb's energy (D) Internal energy
Chapter 8: Problem 1120
Which of the following is not a thermodynamical function. (A) Enthalpy (B) Work done (C) Gibb's energy (D) Internal energy
All the tools & learning materials you need for study success - in one app.
Get started for free
For adiabatic Process which relation is true mentioned below ? \(\gamma=\left\\{\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right\\}\) (A) \(\mathrm{p}^{\gamma} \mathrm{V}=\mathrm{Const}\) (B) \(\mathrm{T}^{\gamma} \mathrm{V}=\mathrm{Const}\) (C) TV \(^{\gamma}=\) Const (D) \(\mathrm{TV}^{\gamma-1}=\) Const
Water of volume 2 liter in a container is heated with a coil of $1 \mathrm{kw}\( at \)27^{\circ} \mathrm{C}$. The lid of the container is open and energy dissipates at the rate of \(160(\mathrm{~J} / \mathrm{S}) .\) In how much time temperature will rise from \(27^{\circ} \mathrm{C}\) to $77^{\circ} \mathrm{C}\(. Specific heat of water is \)4.2\\{(\mathrm{KJ}) /(\mathrm{Kg})\\}$ (A) \(7 \mathrm{~min}\) (B) \(6 \min 2 \mathrm{~s}\) (C) \(14 \mathrm{~min}\) (D) \(8 \min 20 \mathrm{~S}\)
One mole of an ideal gas $\left(\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right)=\gamma$ at absolute temperature \(\mathrm{T}_{1}\) is adiabatically compressed from an initial pressure \(\mathrm{P}_{1}\) to a final pressure \(\mathrm{P}_{2}\) The resulting temperature \(\mathrm{T}_{2}\) of the gas is given by. (A) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\\{\gamma /(\gamma-1)\\}}$ (B) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\\{(\gamma-1) / \gamma\\}}$ (C) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\gamma}$ (D) $\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\gamma-1}$
Work done by \(0.1\) mole of a gas at \(27^{\circ} \mathrm{C}\) to double its volume at constant Pressure is \(\quad\) Cal. $R=2\left\\{(\mathrm{Cal}) /\left(\mathrm{mol}^{\circ} \mathrm{K}\right)\right\\}$ (A) 600 (B) 546 (C) 60 (D) 54
The Volume of air increases by \(5 \%\) in an adiabatic expansion. The percentage decrease in its Pressure will be (A) \(5 \%\) (B) \(6 \%\) (C) \(7 \%\) (D) \(8 \%\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.