Chapter 8: Problem 1149
An adiabatic Bulk modulus of an ideal gas at Pressure \(\mathrm{P}\) is (A) \(\gamma \mathrm{P}\) (B) \((\mathrm{p} / \gamma)\) (C) \(\mathrm{P}\) (D) \((\mathrm{p} / 2)\)
Chapter 8: Problem 1149
An adiabatic Bulk modulus of an ideal gas at Pressure \(\mathrm{P}\) is (A) \(\gamma \mathrm{P}\) (B) \((\mathrm{p} / \gamma)\) (C) \(\mathrm{P}\) (D) \((\mathrm{p} / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA Carnot engine having a efficiency of \(\mathrm{n}=(1 / 10)\) as heat engine is used as a refrigerators. if the work done on the system is \(10 \mathrm{~J}\). What is the amount of energy absorbed from the reservoir at lowest temperature ! (A) \(1 \mathrm{~J}\) (B) \(90 \mathrm{~J}\) (C) \(99 \mathrm{~J}\) (D) \(100 \mathrm{~J}\)
A diatomic gas initially at \(18^{\circ} \mathrm{C}\) is Compressed adiabatically to one eighth of its original volume. The temperature after Compression will be (A) \(10^{\circ} \mathrm{C}\) (B) \(668 \mathrm{~K}\) (C) \(887^{\circ} \mathrm{C}\) (D) \(144^{\circ} \mathrm{C}\)
In an isothermal reversible expansion, if the volume of \(96 \mathrm{~J}\) of oxygen at \(27^{\circ} \mathrm{C}\) is increased from 70 liter to 140 liter, then the work done by the gas will be (A) \(300 \mathrm{R} \log _{\mathrm{e}}^{(2)}\) (B) \(81 \mathrm{R} \log _{\mathrm{e}}^{(2)}\) (C) \(2.3 \times 900 \mathrm{R} \log _{10} 2\) (D) \(100 \mathrm{R} \log _{10}^{(2)}\)
One mole of an ideal gas $\left(\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right)=\gamma$ at absolute temperature \(\mathrm{T}_{1}\) is adiabatically compressed from an initial pressure \(\mathrm{P}_{1}\) to a final pressure \(\mathrm{P}_{2}\) The resulting temperature \(\mathrm{T}_{2}\) of the gas is given by. (A) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\\{\gamma /(\gamma-1)\\}}$ (B) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\\{(\gamma-1) / \gamma\\}}$ (C) $\mathrm{T}_{2}=\mathrm{T}_{1}\left\\{\mathrm{p}_{2} / \mathrm{p}_{1}\right\\}^{\gamma}$ (D) $\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\gamma-1}$
An ideal gas heat engine is operating between \(227^{\circ} \mathrm{C}\) and \(127^{\circ} \mathrm{C}\). It absorbs \(10^{4} \mathrm{~J}\) Of heat at the higher temperature. The amount of heat Converted into. work is \(\ldots \ldots\) J. (A)2000 (B) 4000 (C) 5600 (D) 8000
What do you think about this solution?
We value your feedback to improve our textbook solutions.