Chapter 8: Problem 1166
A gas expands \(0.25 \mathrm{~m}^{3}\) at Constant Pressure \(10^{3}\left(\mathrm{~N} / \mathrm{m}^{2}\right)\) the work done is (A) \(250 \mathrm{~J}\) (B) \(2.5\) erg (C) \(250 \mathrm{~W}\) (D) \(250 \mathrm{~N}\)
Chapter 8: Problem 1166
A gas expands \(0.25 \mathrm{~m}^{3}\) at Constant Pressure \(10^{3}\left(\mathrm{~N} / \mathrm{m}^{2}\right)\) the work done is (A) \(250 \mathrm{~J}\) (B) \(2.5\) erg (C) \(250 \mathrm{~W}\) (D) \(250 \mathrm{~N}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAn ideal gas at \(27 \mathrm{C}\) is Compressed adiabatically, to \(\\{8 / 27\\}\) of its original Volume. If \(\mathrm{v}=(5 / 3)\), then the rise in temperature is (A) \(225 \mathrm{k}\) (B) \(450 \mathrm{~K}\) (C) \(375 \mathrm{~K}\) (D) \(405 \mathrm{~K}\)
\(\mathrm{Cp}\) and Cv denote the specific heat of oxygen per unit mass at constant Pressure and volume respectively, then (A) \(\mathrm{cp}-\mathrm{cv}=(\mathrm{R} / 16)\) (B) \(\mathrm{Cp}-\mathrm{Cv}=\mathrm{R}\) (C) \(\mathrm{Cp}-\mathrm{Cv}=32 \mathrm{R}\) (D) \(\mathrm{Cp}-\mathrm{Cv}=(\mathrm{R} / 32)\)
If a heat engine absorbs \(50 \mathrm{KJ}\) heat from a heat source and has efficiency of \(40 \%\), then the heat released by it in heat sink is (A) \(40 \mathrm{KJ}\) (B) \(30 \mathrm{KJ}\) (C) \(20 \mathrm{~J}\) (D) \(20 \mathrm{KJ}\)
Which of the following is not a thermodynamic co-ordinate. (A) \(\mathrm{R}\) (B) \(\mathrm{P}\) (C) \(\mathrm{T}\) (D) \(\mathrm{V}\)
An engine is supposed to operate between two reservoirs at temperature \(727^{\circ} \mathrm{C}\) and \(227^{\circ} \mathrm{C}\). The maximum possible efficiency of such an engine is (A) \((3 / 4)\) (B) \((1 / 4)\) (C) \((1 / 2)\) (D) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.