Chapter 9: Problem 1233
\(2 \mathrm{~g}\) of \(\mathrm{O}_{2}\) gas is taken at \(27^{\circ} \mathrm{C}\) and pressure \(76 \mathrm{~mm} \mathrm{Hg}\). Find out volume of gas (ln liter) (A) \(3.08\) (B) \(44.2\) (C) \(2.05\) (D) \(2.44\)
Chapter 9: Problem 1233
\(2 \mathrm{~g}\) of \(\mathrm{O}_{2}\) gas is taken at \(27^{\circ} \mathrm{C}\) and pressure \(76 \mathrm{~mm} \mathrm{Hg}\). Find out volume of gas (ln liter) (A) \(3.08\) (B) \(44.2\) (C) \(2.05\) (D) \(2.44\)
All the tools & learning materials you need for study success - in one app.
Get started for free1 mole of gas occupies a volume of \(100 \mathrm{~m} 1\) at \(50 \mathrm{~mm}\) pressure. What is the volume occupied by two moles of gas at $100 \mathrm{~mm}$ pressure and at same temperature (A) \(50 \mathrm{ml}\) (B) \(200 \mathrm{ml}\) (C) \(100 \mathrm{ml}\) (D) \(500 \mathrm{~m} 1\)
If three molecules have velocities \(0.5,1\) and 2 the ratio of rms speed and average speed is (The velocities are in \(\mathrm{km} / \mathrm{s}\) ) (A) \(0.134\) (B) \(1.34\) (C) \(1.134\) (D) \(13.4\)
A cylinder contains \(10 \mathrm{~kg}\) of gas at pressure of $10^{\prime} \mathrm{N} / \mathrm{m}^{2}$. The quantity of gas taken out of the cylinder, if final pressure is \(2.5 \times 10^{6} \mathrm{Nm}^{-2}\). will be (temperature of gas is constant) (A) \(5.2 \mathrm{~kg}\) (B) \(3.7 \mathrm{~kg}\) (C) \(7.5 \mathrm{~kg}\) (D) \(1 \mathrm{~kg}\)
What is the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2 atm and temperature $17^{\circ} \mathrm{C} ?$ Take the radius of nitrogen molecule to be 1A. Molecular mass of nitrogen \(=28\), $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}, 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{Nm}^{-2}$ (A) \(2.2 \times 10^{-7} \mathrm{~m}, 2.58 \times 10^{9}\) (B) \(1.1 \times 10^{-7} \mathrm{~m}, 4.58 \times 10^{8}\) (C) \(1.1 \times 10^{-7} \mathrm{~m}, 4.58 \times 10^{9}\) (D) \(2.2 \times 10^{-7} \mathrm{~m}, 3.58 \times 10^{9}\)
At room temperature \(\left(27^{\circ} \mathrm{C}\right)\), the rms speed of the molecules of certain diatomic gas is found to be $1930 \mathrm{~m} / \mathrm{s}$. The gas is (A) \(\mathrm{O}_{2}\) (B) \(\mathrm{Cl}_{2}\) (C) \(\mathrm{H}_{2}\) (D) \(\mathrm{F}_{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.