If the molecular weight of two gases are \(\mathrm{M}_{1}\) and
\(\mathrm{M}_{2}\), then at a given temperature the ratio of root mean square
velocity \(\mathrm{v}_{1}\) and \(v_{2}\) will be
(A) \(\sqrt{\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)}\)
(B) \(\sqrt{\left(M_{2} / M_{1}\right)}\)
(C) $\left.\sqrt{[}\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right)
/\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)\right]$
(D) $\left.\sqrt{[}\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)
/\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right)\right]$