Chapter 9: Problem 1261
The ratio of mean kinetic energy of hydrogen and oxygen at a given temperature is (A) \(1: 8\) (B) \(1: 4\) (C) \(1: 16\) (D) \(1: 1\)
Chapter 9: Problem 1261
The ratio of mean kinetic energy of hydrogen and oxygen at a given temperature is (A) \(1: 8\) (B) \(1: 4\) (C) \(1: 16\) (D) \(1: 1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe average translational energy and \(\mathrm{rms}\) speed of molecules in sample of oxygen gas at \(300 \mathrm{~K}\) are $6.21 \times 10^{-21} \mathrm{~J}\( and \)484 \mathrm{~m} / \mathrm{s}$ respectively. The corresponding values at \(600 \mathrm{~K}\) are nearly (assuming ideal gas behavior) (A) \(6.21 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}\) (B) \(12.42 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}\) (C) \(12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}\) (D) \(8.78 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}\)
A diatomic molecule has how many degrees of freedom (For rigid rotator) (A) 4 (B) 3 (C) 6 (D) 5
The volume of a gas at \(20 \mathrm{C}\) is \(200 \mathrm{ml}\). If the temperature is reduced to \(-20^{\circ} \mathrm{C}\) at constant pressure, its volume will be. (A) \(172.6 \mathrm{~m} 1\) (B) \(17.26 \mathrm{ml}\) (C) \(19.27 \mathrm{ml}\) (D) \(192.7 \mathrm{ml}\)
If \(\mathrm{rms}\) speed of a gas is $\mathrm{v}_{\mathrm{rms}}=1840 \mathrm{~m} / \mathrm{s}\( and its density \)\rho=8.99 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}$, the pressure of the gas will be (A) \(1.01 \times 10^{3} \mathrm{Nm}^{-2}\) (B) \(1.01 \times 10^{5} \mathrm{Nm}^{-2}\) (C) \(1.01 \times 10^{7} \mathrm{Nm}^{-2}\) (D) \(1.01 \mathrm{Nm}^{-2}\)
The temperature at which the rms speed of hydrogen molecules is equal to escape velocity on earth surface will be (A) \(5030 \mathrm{~K}\) (B) \(10063 \mathrm{~K}\) (C) \(1060 \mathrm{~K}\) D) \(8270 \mathrm{~K}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.