Chapter 9: Problem 1320
The value of \(\mathrm{C}_{\mathrm{v}}\) for one mole of neon gas is (A) \((3 / 2) \mathrm{R}\) (B) \((7 / 2) \mathrm{R}\) (C) \((1 / 2) \mathrm{R}\) (D) \((5 / 2) \mathrm{R}\)
Chapter 9: Problem 1320
The value of \(\mathrm{C}_{\mathrm{v}}\) for one mole of neon gas is (A) \((3 / 2) \mathrm{R}\) (B) \((7 / 2) \mathrm{R}\) (C) \((1 / 2) \mathrm{R}\) (D) \((5 / 2) \mathrm{R}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA diatomic gas molecule has translational, rotational and vibrational degrees of freedom. The $\left(\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}\right)$ is (A) \(1.29\) (B) \(1.33\) C) \(1.4\) (D) \(1.67\)
The relation between two specific heats of a gas is (A) $\mathrm{C}_{\mathrm{V}}-\mathrm{C}_{\mathrm{P}}=(\mathrm{R} / \mathrm{J})$ (B) \(\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{J}\) (C) $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=(\mathrm{R} / \mathrm{J})$ (D) \(\mathrm{C}_{\mathrm{V}}-\mathrm{C}_{\mathrm{P}}=\mathrm{J}\)
The temperature of an ideal gas is increased from \(27^{\circ} \mathrm{C}\) to \(127^{\circ} \mathrm{C}\), then percentage increase in \(\mathrm{v}_{\mathrm{rms}}\) is (A) \(33 \%\) (B) \(11 \%\) (C) \(15.5 \%\) (D) \(37 \%\)
A sample of gas is at \(0^{\circ} \mathrm{C}\). To what temperature it must be raised in order to double the rms speed of molecule. (A) \(270^{\circ} \mathrm{C}\) (B) \(819^{\circ} \mathrm{C}\) (C) \(100^{\circ} \mathrm{C}\) (D) \(1090^{\circ} \mathrm{C}\)
At \(0 \mathrm{~K}\) which of the following properties of a gas will be zero (A) Kinetic energy (B) Density (C) Potential energy (D) Vibrational energy
What do you think about this solution?
We value your feedback to improve our textbook solutions.