Chapter 9: Problem 1329
For a gas \(\gamma=(7 / 5)\), the gas may probably be (A) Neon (B) Argon (C) Helium (D) Hydrogen
Chapter 9: Problem 1329
For a gas \(\gamma=(7 / 5)\), the gas may probably be (A) Neon (B) Argon (C) Helium (D) Hydrogen
All the tools & learning materials you need for study success - in one app.
Get started for freeThe temperature at which the rms speed of hydrogen molecules is equal to escape velocity on earth surface will be (A) \(5030 \mathrm{~K}\) (B) \(10063 \mathrm{~K}\) (C) \(1060 \mathrm{~K}\) D) \(8270 \mathrm{~K}\)
At what temperature pressure remaining constant will the \(\mathrm{rms}\) speed of a gas molecules increase by \(10 \%\) of the \(\mathrm{rms}\) speed at NTP? (A) \(57.3 \mathrm{~K}\) (B) \(57.3^{\circ} \mathrm{C}\) (C) \(557.3 \mathrm{~K}\) (D) \(-57.3^{\circ} \mathrm{C}\)
For a gas, the rms speed at \(800 \mathrm{~K}\) is (A) Four times the value at \(200 \mathrm{~K}\) (B) Twice the value at \(200 \mathrm{~K}\) (C) Half the value at \(200 \mathrm{~K}\) (D) same as at \(200 \mathrm{~K}\)
If \(\mathrm{rms}\) speed of a gas is $\mathrm{v}_{\mathrm{rms}}=1840 \mathrm{~m} / \mathrm{s}\( and its density \)\rho=8.99 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}$, the pressure of the gas will be (A) \(1.01 \times 10^{3} \mathrm{Nm}^{-2}\) (B) \(1.01 \times 10^{5} \mathrm{Nm}^{-2}\) (C) \(1.01 \times 10^{7} \mathrm{Nm}^{-2}\) (D) \(1.01 \mathrm{Nm}^{-2}\)
A cylinder contains \(10 \mathrm{~kg}\) of gas at pressure of $10^{\prime} \mathrm{N} / \mathrm{m}^{2}$. The quantity of gas taken out of the cylinder, if final pressure is \(2.5 \times 10^{6} \mathrm{Nm}^{-2}\). will be (temperature of gas is constant) (A) \(5.2 \mathrm{~kg}\) (B) \(3.7 \mathrm{~kg}\) (C) \(7.5 \mathrm{~kg}\) (D) \(1 \mathrm{~kg}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.