Suppose that the number of events occurring in a given time period is a Poisson random variable with parameter λ. If each event is classified as a type ievent with probabilitypi,i=1,....,n,pi=1, independently of other events, show that the numbers of type ievents that occur,i=1,....,n, are independent Poisson random variables with respective parametersλpi,i=1,.....,n.

Short Answer

Expert verified

Thus, the numbers of type events ithat occur i=1,....,n,are independent Poisson random variables with corresponding parameters λpi,i=1,....,n, as seen on the right hand side of the formula that is given .

Step by step solution

01

Poisson random variable :

A Poisson random variable is used to illustrate how many times an event will happen in a given amount of time.

02

Explanation : 

Formula :

For Poisson distribution of random variables Xi,i=1,......,n,we have:

Pi=1nXi=i=1nxi=i=1n(λ)xii=1nxi!e-λ

Proof :

Let Xi,i=1,.....,n,be the Poisson random variables with respect to each event of type i.

Since, it is given that i=1nXi~P(λ), then assume a set of non- negative integers x1,x2,x3,......,xn,

We have:

P(X1=x1,X2=x2,....Xn=xn)=PX1=x1,X2=x2,....Xn=xni=1nXi=i=1nxi·Pi=1nXi=i=1nxi

Assuming there were a total of i=1nxievents, random variables X1,X2,.....Xnwill have a multinomial distribution with corresponding parameters i=1nxi,p1,p2,...pn.

Thus we write:

PX1=x1,X2=x2,....Xn=xni=1nXi=i=1nxi=i=1nxi!x1!x2!....xn!p1x1p2x2....pnxn.

And for Poisson distribution, we also know that:

Pi=1nXi=i=1nxi=i=1n(λ)xii=1nxi!e-λ.

03

Explanation : 

Hence

P(X1=x1,X2=x2,......,Xn=xn)=i=1n(λ)xix1!x2!...xn!·(p1x1p2x2....pnxn)·e-λ

=i=1n(piλ)xixi!e-piλ=i=1nP(Xi=xi)

=P(X1=x1)·P(X2=x2)·····P(Xn=xn)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that A, B, C, are independent random variables, each being uniformly distributed over0,1.

(a) What is the joint cumulative distribution function of A, B, C?

(b) What is the probability that all of the roots of the equation AX2+Bx+C=0are real?

X and Y have joint density function

f(x,y)=1x2y2x1,y1

(a) Compute the joint density function of U = XY, V = X/Y.

(b) What are the marginal densities?

Let X1,...,Xn be independent and identically distributed random variables having distribution function F and density f. The quantity MK[X(1)+X(n)]/2, defined to be the average of the smallest and largest values in X1,...,Xn, is called the midrange of the sequence. Show that its distribution function is FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">

FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=n-m[F(2mx)F(x)]n1f(x)dx.


The joint density of X and Y is given by

f(x,y)=C(y-x)e-y-y<x<y,0<y<

(a) Find C.

(b) Find the density function of X.

(c) Find the density function of Y.

(d) Find E[X].

(e) Find E[Y].

If X and Y are independent standard normal random variables, determine the joint density function of

U=XV=XY

Then use your result to show that X/Yhas a Cauchy distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free