The moment generating function of Xis given by role="math" localid="1647490949330" MX(t)=exp{2et2}nd that of Yby MY(T)=(34et+14)10. If Xand Yare independent, what are

(a) P{X+Y=2}?

(b) P{XY=0}?

(c) E[XY]?

Short Answer

Expert verified

a) The value of P{X+Y=2}is 6.024×105

b) The value of P[XY=0]is 0.135300825

c) The value ofE[XY]is15

Step by step solution

01

Given Information (Part a)

Function ofX=MX(t)=exp2et2

Function of Y=MY(T)=34et+1410

(X,Y)=Independent,

ThenP{X+Y=2}=?

02

Explanation (Part a) 

MX(t)=exp2et1X~Poisson

MY(t)=34et+1410Y~Binomial10,34

CalculateP{X+Y=2}

P[X+Y=2]=P[X=0,Y=2]+P[X=1,Y=1]+P[X=2,Y=0]

Here(X,Y)are independent, so

=P[X=0]P[Y=2]+P[X=1]P[Y=1]+P[X=2]P[Y=0]

=e2(0.000386)+2e2(0.0000286)+22e22!9.537×107

=e20.000386+5.72×105+1.9074×106

localid="1647493526857" =e24.451074×104

=6.024×105

03

Final Answer (Part a) 

Hence, the value ofP{X+Y=2}is 6.024×105.

04

Given Information (Part b)

Function of X=MX(t)=exp2et-2

Function of Y=MY(T)=34et+1410

(X,Y)=Independent,

Then role="math" localid="1647493957328" P[XY=0]=??

05

Explanation (Part b) 

b) P[XY=0]=P[X=0orrole="math" localid="1647494461034" Y=0]

role="math" localid="1647494559363" P[X=0]+P[Y=0]P[X=0,Y=0]

=e2+(9.5367×107)[e2(9.5367×107)]

role="math" localid="1647494541691" =0.1353+0.0000009540.000000129

=0.135300825

06

Final Answer (Part b)

Hence, the value isP[XY=0]=0.135300825

07

Step 1:

Function of X=MX(t)=exp2et-2

Function of Y=MY(T)=34et+1410

(X,Y)=Independent,

ThenE[XY]=?

08

Explanation (Part c)

c) E[XY]=E[X]E[Y](XandY)are independent

=(λ)·(np)

=(2)(10×0.75)

=15

09

Final Answer (c)

Hence, the value isE[X,Y]=15

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free