Supposethatforsomeb>0,theregionbetweeny=xandy=0on[0,b],rotatedaroundthex-axis,hasvolumeV=8π.Withoutsolvinganyintegrals,findthevolumeofsolidobtainedbyrotatingtheregionboundedbyy=x,y=b,andx=0aroundthex-axis.

Short Answer

Expert verified

VolumeofSolid,V=π(b2-8)

Step by step solution

01

Step 1. Given information is:

Thevolumeofsolidformedbyrotatingtheregionbetweeny=xandy=0intheinterval[0,b]isknowntobe8π.

02

Step 2. Plotting graph for x and b

Plotthegraphofy=xandidentifytheregionofrotationhere.

Considertheregionboundedbyy=x,y=bandx=0.Theequationy=brepresentsahorizontallinepassingthroughthepointonthecurvey=x,correspondingtox-valueofb.Plottinggraphusingthesefacts:

03

Step 3. Calculating Volume of Solid

Considerthecombinedregion.Rotateitaroundthex-axis.Thiswillformasolidofdiskshape,withradiusofbunitsandthicknessofbunits.VolumeofadiskisgivenbytherelationV=πr2t,whereristheradiusofdiskandtisthethicknessofdisk.Usethisrelationtodeterminethevolumeofdiskformedbytherotatingthecombinedregionaroundx-axis.V=πb2bV=πb2Subtractthegivenvolumeofsoildformedbyrotatingtheregionbetweeny=xandy=0intheinterval[0,b],whichisknowntobe8π,fromthistotalvolume.Thiswillgivethevolumeofthesolidformedbyrotatingtheregionboundedbyy=x,y=bandx=0V=πb2-8πV=π(b2-8)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free