Sketch careful, labeled graphs of each function fin Exercises 57-82by hand, without consulting a calculator or graphing utility. As part of your work, make sign charts for the signs, roots, and undefined points of fand f'and examine any relevant limits so that you can describe all key points and behaviors of f.

fx=xlnx.

Short Answer

Expert verified

The graph for the functionfx=xlnx is,

Step by step solution

01

Step 1. Given information

fx=xlnx.

02

Step 2. Let src="" role="math" localid="1648548589163" src="https://studysmarter-mediafiles.s3.amazonaws.com/media/textbook-exercise-images/e3a39aa2-cffb-4e88-9920-a390b0fd0716.svg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIA4OLDUDE42UZHAIET%2F20220329%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20220329T101855Z&X-Amz-Expires=90000&X-Amz-SignedHeaders=host&X-Amz-Signature=979c14ce910f9452023d7a198bae8b26913addddbfca498d82c264ef2af661e8" y=xln x.

Now point table for the function is given by,

x y x,y
0.0001 0 0.0001,0
1 0 1,0
2 1.386 2,1.386
3 3.296 3,3.296
03

Step 3. The graph for the function is,

04

Step 4. Now for critical point f'x=0.

ddx(xlnx)=0x·1x+lnx·1=01+lnx=0lnx=-1x=e-1

Therefore, fhas a critical point atx=1e. It has a local minima atx=1e.

05

Step 5. The sign chart of f is shown below:

For roots of the function,

xlnx=0lnx=0x=e0x=1

06

Step 6. Therefore, the function f is defined on 0,∞.

The function is positive on 1,and negative elsewhere it is defined. The function have a local minimum at x=e-1. The function is increasing on 1e,and decreasing elsewhere it is defined.

Again,

limx0+f(x)=limx0+xlnx=limxf(x)=limxxlnx=

limx0+f(x)= So, there is a vertical asymptote atx=0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free