Foreachfunctionfandinterval[a,b]inExercises3438,itispossibletofindtheexactsignedareabetweenthegraphoffandthex-axison[a,b]geometricallybyusingtheareasofcircles,triangles,andrectangles.Findthisexactarea,andthencalculatetheleft,right,midpoint,upper,lower,andtrapezoidsumswithn=4.Whichapproximationruleismostaccurate?f(x)=3x+1,[a,b]=[3,5].

Short Answer

Expert verified

left-sum = 24.5, right-sum= 27.5 , trapezoid sum = 26.

Step by step solution

01

Step 1. Given information is .

Thefunctionisf(x)=3x+1andtheintervalis[a,b]=[3,5].

02

. Finding area .

03

Step 3. Calculation the exact sum .

Enterthefunction(3x+5,X,3,5)PressENTERThedisplayisshownbelow,

Therefore ,the exact sum is26.

04

Step 4. Calculating left- sum .

Theleft-sumdefinedfornrectangleson[a,b]isk=1nf(xk-1)x.Where,x=b-an,xk=a+kx.Now,x=5-34=12.So,xk=3+k(12)=6+k2.Intheleftsum,xk-1,istheleftmostpointintheinterval[xk-1,xk].So,xk=5+k2.Theleftsumis,k=1435+k2+112=12k=1417+3k2=1217+32+17+62+17+92+17+122=24.5Therefore,theleftsumis24.5.

05

Step 5. Calculating the right-sum .

TheRight-sumdefinedfornrectangleson[a,b]isk=1nf(xk)x.Where,x=b-an,xk=a+kx.Now,x=5-34=12.So,xk=3+k(12)=6+k2.Therightsumis,k=1436+k2+112=12k=1420+3k2=1220+32+20+62+20+92+20+122=27.5Therefore,therightsumis27.5.

06

Step 6. Calculating trapezoid sum .

Thetrapezoidsumis,24.5+27.52=26.Therefore,thetrapezoidsumis26.

07

Step 7. Calculating midpoint sum .

Themidpointsumdefinedfornrectangleson[a,b]isk=1nf(xk*)x.Where,x=b-an,xk*=xk-1+xk2.Now,themidpointtermisxk*=k+62+k+522=2k+114.Themidpointsumis,k=14311+2k2+112=12k=1435+6k4=1235+62+35+122+35+182+35+242=26Therefore,themidpointsumis26.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free