Evaluate each of the double integrals in Exercises 37–54 as iterated integrals.

RxsinxcosydA,whereR={(x,y)|3x2and2y2}

Short Answer

Expert verified

The value is-4sin(2)cos(2)+2sin22-6sin(2)cos(3)+2sin(2)sin(3)

Step by step solution

01

Step 1. Given Information :

Given double integrals :

RxsinxcosydA,whereR={(x,y)|3x2and2y2}

We want to evaluate each of the double integrals as iterated integrals.

02

Step 2. Solution:

UsingFubini'sTheoremRxsinxcosydA=-22-32xsinxcosydxdyEvaluationprocedurefortheiteratedintegralweget=-22-32xsinxcosydxdy

ByFundamentalTheoremofCalculuswehave=-22cosy[-xcosx]-32+[sinx]-32dyEvaluationoftheinnerantiderivativeweget=-22cosy(-2cos2-3cos3)+(sin2+sin3)dy=-22cosy(-2cos2+sin2-3cos3+sin3)dy

ByFundamentalTheoremofCalculuswehave=(-2cos2+sin2-3cos3+sin3)siny-22Evaluationoftheouterantiderivativeweget=(-2cos2+sin2-3cos3+sin3)sin2+sin2=(-2cos2+sin2-3cos3+sin3)2sin2=-4sin(2)cos(2)+2sin22-6sin(2)cos(3)+2sin(2)sin(3)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free