Use Theorem 12.45 to show that the point

ad-aby0-acz0+b2x0+c2x0a2+b2+c2,bd-abx0-bcz0+a2y0+c2y0a2+b2+c2

provides an absolute minimum for the function

D(x,y)=x-x02+y-y02+d-ax-byc-z02

Short Answer

Expert verified

ad-aby0-acz0+b2x0+c2x0a2+b2+c2,bd-abx0-bcz0+a2y0+c2y0a2+b2+c2

Step by step solution

01

Given information

D(x,y)=x-x02+y-y02+d-ax-byc-z02

02

Calculation

The goal is to figure out how to solve the system of equations.

ad-by0-acz0+b2x0+c2x0a2+b2+c2,bd-abx0-bcz0+a2y0+c2y0a2+b2+c2

gives an absolute minimum for the given function.

Differentiate (1)partially with respect to x

xD(x,y)=xx-x02+y-y02+d-ax-byc-z02Dx(x,y)=xx-x02+xy-y02+xd-ax-byc-z02=2x-x0+0+2d-ax-byc-z0xd-ax-byc-z0=2x-x0+2d-ax-byc-z0xd-ax-byc-xz0=2x-x0+2d-ax-byc-z0-ac-0=2x-x0-2·acd-ax-byc-z0..(2)xD(x,y)=xx-x02+y-y02+d-ax-byc-z02Dx(x,y)=xx-x02+xy-y02+xd-ax-byc-z02=2x-x0+0+2d-ax-byc-z0xd-ax-byc-z0=2x-x0+2d-ax-byc-z0xd-ax-byc-xz0=2x-x0+2d-ax-byc-z0-ac-0=2x-x0-2·acd-ax-byc-z0..(2)uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('f5aa44028a934f2...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">xD(x,y)=xx-x02+y-y02+d-ax-byc-z02Dx(x,y)=xx-x02+xy-y02+xd-ax-byc-z02=2x-x0+0+2d-ax-byc-z0xd-ax-byc-z0=2x-x0+2d-ax-byc-z0xd-ax-byc-xz0=2x-x0+2d-ax-byc-z0-ac-0=2x-x0-2·acd-ax-byc-z0..(2)

Differentiate (1)partially with respect to y

yD(x,y)=yx-x02+y-y02+d-ax-byc-z02Dy(x,y)=yx-x02+yy-y02+yd-ax-byc-z02=0+2y-y0+2d-ax-byc-z0yd-ax-byc-z0=2y-y0+2d-ax-byc-z0yd-ax-byc-yz0=2y-y0+2d-ax-byc-z0-bc-0=2y-y0-2·bcd-ax-byc-z0(3)

The stationary point is given by

Dx(x,y)=0and Dy(x,y)=0

Thus,

Dx(x,y)=02x-x0-2·acd-ax-byc-z0=02x-2x0-2adc2+2a2c2x+2abyc2+2acz0=02x+2a2c2x-2x0-2adc2+2abyc2+2acz0=02+2a2c2x+2abc2y-2x0-2adc2+2acz0=02+2a2c2x+2abc2y=2x0+2adc2-2acz0

And,

Dy(x,y)=02y-y0-2·bcd-ax-byc-z0=02y-2y0-2bdc2+2abc2x+2b2yc2+2bcz0=02y+2b2c2y-2y0-2bdc2+2abc2x+2bcz0=02+2b2c2y+2abc2x-2y0-2bdc2+2bcz0=0

2abc2x+2+2b2c2y=2y0+2bdc2-2bcz0

03

 Step 3: Calculation

Multiply (4)by 2abc2and multiply (5)by 2+2a2c2and then subtract

2abc22+2a2c2x+2abc2y-2+2a2c22abc2x+2+2b2c2y

=2abc22x0+2adc2-2acz0-2+2a2c22y0+2bdc2-2bcz0

2abc22+2a2c2x+2abc2·2abc2y-2+2a2c22abc2x-2+2a2c22+2b2c2y

=4abc2x0+4a2bdc4-4a2bc3z0-4y0-4bdc2

+4bcz0-4a2c2y0-4a2bdc4+4a2bc3z0

4a2b2c4-2+2a2c22+2b2c2y=4abc2x0-4y0-4bdc2+4bcz0-4a2c2y0

4a2b2c4-4-4b2c2-4a2c2-4a2b2c4y=-4bdc2+4abc2x0+4bcz0-4y0-4a2c2y02abc22+2a2c2x+2abc2·2abc2y-2+2a2c22abc2x-2+2a2c22+2b2c2y

=4abc2x0+4a2bdc4-4a2bc3z0-4y0-4bdc2+4bcz0-4a2c2y0-4a2bdc4+4a2bc3z04a2b2c4-2+2a2c22+2b2c2y=4abc2x0-4y0-4bdc2+4bcz0-4a2c2y04a2b2c4-4-4b2c2-4a2c2-4a2b2c4y=-4bdc2+4abc2x0+4bcz0-4y0-4a2c2y0-4-4b2c2-4a2c2y=-4bdc2+4abc2x0+4bcz0-4y0-4a2c2y0-4c2-4b2-4a2c2y=-4bd+4abx0+4bcz0-4c2y0-4a2y0c2-4c2a2+b2+c2y=-4c2bd-abx0-bcz0+c2y0+a2y0a2+b2+c2y=bd-abx0-bcz0+c2y0+a2y0

y=bd-abx0-bcz0+a2y0+c2y0a2+b2+c2

Substitute y=bd-abx0-bcz0+a2y0+c2y0a2+b2+c2in (4)

2abc2x+2+2b2c2bd-abx0-bcz0+a2y0+c2y0a2+b2+c2=2y0+2bdc2-2bcz02c2abx+c2+b2bd-abx0-bcz0+a2y0+c2y0a2+b2+c2=2c2c2y0+bd-bcz0abx+c2+b2bd-abx0-bcz0+a2y0+c2y0a2+b2+c2=c2y0+bd-bcz0abx=c2y0+bd-bcz0-c2+b2bd-abx0-bcz0+a2y0+c2y0a2+b2+c2

=c2a2y0+c2c2+b2y0+a2bd+c2+b2bd-a2bcz0-c2+b2bcz0a2+b2+c2=c2a2y0+a2bd-a2bcz0+c2+b2abx0-c2+b2a2y0a2+b2+c2=c2a2y0+a2bd-a2bcz0+c2abx0+b2abx0-c2a2y0-b2a2y0a2+b2+c2=a2bd-a2bcz0+c2abx0+b2abx0-b2a2y0a2+b2+c2=abad-acz0+c2x0+b2x0-aby0a2+b2+c2x=ad-aby0-acz0+b2x0+c2x0a2+b2+c2

Hence, maximum or minimum exists at

ad-aby0-acz0+b2x0+c2x0a2+b2+c2,bd-abx0-bcz0+a2y0+c2y0a2+b2+c2
04

 Step 4: Calculation

To determine the nature point calculate Dxx(x,y),Dyy(x,y)and Dxy(x,y)

Differentiate (2)partially with respect to x

dxDx(x,y)=dx2x-x0-2·acd-ax-byc-z0Dxx(x,y)=2dxx-x0-2·acdxd-ax-byc-z0=2-2·ac-ac=2+2a2c2

Differentiate (3)partially with respect to y

dyDy(x,y)=dy2y-y0-2·bcd-ax-byc-z0Dyy(x,y)=2dyy-y0-2·bcdyd-ax-byc-z0=2-2·bc-bc=2+2b2c2

Differentiate ( 2 ) partially with respect to y

dyDx(x,y)=dy2x-x0-2·acd-ax-byc-z0Dxy(x,y)=2dyx-x0-2·acdyd-ax-byc-z0=0-2·ac-bc=2abc2

Now, find the discriminant of D(x,y)

detHf=DxxDyy-Dxy2=2+2a2c22+2b2c2-2abc22=4+4b2c2+4a2c2+2abc22-2abc22=4+4b2c2+4a2c2=4c2+4b2+4a2c2

Since square of a umber is always positive, so detHf>0and Dxx(x,y)>0and Dyy(x,y)>0

As a result, the supplied function D(x,y) has a minimum in my second-order partial derivative test.

ad-aby0-acz0+b2x0+c2x0a2+b2+c2,bd-abx0-bcz0+a2y0+c2y0a2+b2+c2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free