Use Theorem 12.34 to find the indicated derivatives in Exercises 31–36. Be sure to simplify

dxdtwhenx=ρsinφcosθ,ρ=t2,φ=t3,andθ=t4.

Short Answer

Expert verified

Thesinglevariablefunctionis,dxdt=(sint3cost4)(2t)+(t2cost3cost4)(3t2)+(t2sint3(-sint4))(4t3).

Step by step solution

01

Step 1. Given 

x=ρsinφcosθ,ρ=t2,φ=t3,andθ=t4.

02

Step 2. Simplification 

Considerthefollowingfunction,x=ρsinφcosθ,ρ=t2,φ=t3,andθ=t4.Objectiveistofinddxdt.Byusingchainrule,dxdt=xρ.dρdt+xφ.dφdt+xθ.dθdt.xρ=sinφcosθxφ=ρcosφcosθxθ=ρsinφ(-sinθ)Onproceedingthenextstep,dρdt=2t,dφdt=3t2,dθdt=4t3.Onproceedingthenextstep,dxdt=xρ.dρdt+xφ.dφdt+xθ.dθdt.dxdt=(sinφcosθ)(2t)+(ρcosφcosθ)(3t2)+(ρsinφ(-sinθ))(4t3).dxdt=(sint3cost4)(2t)+(t2cost3cost4)(3t2)+(t2sint3(-sint4))(4t3).Thesinglevariablefunctionis,dxdt=(sint3cost4)(2t)+(t2cost3cost4)(3t2)+(t2sint3(-sint4))(4t3).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free