Perform the following steps for the power series inx-x0in∑k=0∞(-1)kk!(2k)!(x-7)2k

Short Answer

Expert verified

The power series inx-x0forF(x)=∫xx0f(t)dtisF(x)=∑k=2∞(-1)k-1(k-1)!(2k-1)!(x-7)2k-1

Step by step solution

01

To find the interval of convergence of the power series, use the ratio test for absolute convergence

Let bk=(-1)kk!(2k)!(x-7)2k

So, bk+1=(-1)k+1(k+1)!(2k+2)!(x-7)2k+2

Therefore, limk→∞bk+1bk=limk→∞-(k+1)(2k+2)(2k+1)x-72

Now, by the ratio test for absolute convergence, the series will converge only when x-72<1

Therefore x∈(6,8)

When x=6

∑k=0∞(-1)kk!(2k)!(x-7)2k=∑k=0∞(-1)kk!(2k)!(6-7)2k=∑k=0∞(-1)kk!(2k)!(-1)2k=∑k=0∞(-1)kk!(2k)!

This series will converge.

When x=8

∑k=0∞(-1)kk!(2k)!(x-7)2k=∑k=0∞(-1)kk!(2k)!(8-7)2k=∑k=0∞(-1)kk!(2k)!(1)2k=∑k=0∞(-1)kk!(2k)!

This series will converge.

Therefore, the interval of convergence of power series is[6,8]

02

Let us take the derivative of the function f(x)

Therefore,

f'(x)=ddx∑k=0∞(-1)kk!(2k)!(x-7)2kf'(x)=∑k=0∞(-1)kk!(2k)!ddx(x-7)2kf'(x)=∑k=0∞(-1)kk!(2k)!2k(x-7)2k-1f'(x)=∑k=0∞(-1)kk!(2k-1)!(x-7)2k-1

Now we change the index in the final step

So, the power series in x-x0for f'is

f'(x)=∑k=0∞(-1)k+1(k+1)!(2k+1)!(x-7)2k+1

03

To find the power series in x-x0 for F, let us integrate the function f(x) from x0 to x

Therefore,

F(x)=∫x0x∑k=0∞(-1)kk!(2k)!(t-7)2kdtF(x)=∑k=1∞(-1)kk!(2k)!∫x0x(t-7)2kdt

Thus,

F(x)=∑k=1∞(-1)kk!(2k)!(x-7)2k+1

So, change the index in the final step :-

F(x)=∑k=2∞(-1)k-1(k-1)!(2k-1)!(x-7)2k-1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free