It can be tedious to integrate the powers of the secant, especially for powers that are large. For \(k>2\). The reduction formula is \(\int \sec^kxdx=\frac{1}{k-1}\sec^{k-2}x\tan x+\frac{k-2}{k-1}\int \sec^{k-2}xdx\).

(a) Use the given reduction formula to find \(\int \sec^3xdx\) and \(\int \sec^7xdx\).

(b) Use integration by parts to prove the reduction formula. (Hint: Choose \(dv = sec^2x dx\).

Short Answer

Expert verified

(a) \(\int sec^3xdx=\frac{1}{2}\sec x\tan x+\frac{1}{2}\log|\sec x+\tan x|+C \)

\(\int \sec^7xdx=\frac{1}{6}\sec^5x\tan x+\frac{5}{24}\sec^3x\tan x+\frac{5}{16}\sec x\tan x+\frac{5}{16}\log|\sec x+\tan x|+C\)

(b) Verified

Step by step solution

01

Part (a) Step 1: Given Information

Consider the integral \(\int \sec^7xdx\) and \(\int \sec^3xdx\).

02

Part (a) Step 2: Evaluate the integral \(\int \sec^7xdx\).

Substitute \(k=7\) into reduction formula and yields,

\(\begin{align*}\int \sec^7xdx&=\frac{1}{7-1}\sec^{7-2}x\tan x+\frac{7-2}{7-1}\int\sec^{7-2}xdx\\&=\frac{1}{6}\sec^5x\tan x+\frac{5}{6}\left ( \frac{1}{4}\sec^3x\tan x+\frac{3}{4}\int\sec^3xdx \right )\\&=\frac{1}{6}\sec^5x\tan x+\frac{5}{24}\sec^3x\tan x+\frac{5}{8}\left ( \frac{1}{2}\sec x\tan x+\frac{1}{2}\int \sec xdx \right )\\&=\frac{1}{6}\sec^5x\tan x+\frac{5}{24}\sec^3x\tan x+\frac{5}{16}\sec x\tan x+\frac{5}{16}\log|\sec x+\tan x|+C\end{align*}\)

03

Part (a) Step 3: Evaluate the integral \(\int \sec^3xdx\).

Substitute \(k=3\) into the reduction formula.

\(\begin{align*}\int \sec^3xdx&=\frac{1}{2}\sec x\tan x+\frac{1}{2}\int \sec xdx\\&=\frac{1}{2}\sec x\tan x+\frac{1}{2}\log|\sec x+\tan x|+C\end{align*}\).

04

Part (b) Step 1: Verify the reduction formula.

Let \(I_k=\int \sec^kxdx\).

Rewrite the integral as \(I_k=\int \sec^{k-2}x\sec^2xdx\).

Using by part: \(\int uv'=uv-\int u'v\)

Let \(u=\sec^{k-2}x,v'=\sec^2x\)

\(u'=(k-2)\sec^{k-3}\sec x\tan x, v=\tan x\).

\(\begin{align*}&I_k=\int \sec^{k-2}x\sec^2xdx\\&I_k=\sec^{k-2}x\tan x-\int (k-2)\sec^{k-3}x\sec x\tan x\tan xdx\\&I_k=\sec^{k-2}x\tan x-(k-2)\int \sec^{k-2}\tan^2xdx\\&I_k=\sec^{k-2}x\tan x-(k-2)\int\sec^{k-2}(\sec^2x-1)dx\\&I_k=\sec^{k-2}x\tan x-(k-2)\int \sec^kdx+(k-2)\int\sec^{k-2}xdx\\&I_k=\sec^{k-2}x\tan x-(k-2)I_k+(k-2)\int\sec^{k-2}xdx\\I_k+(k-2)I_k&=\sec^{k-2}x\tan x+(k-2)\int \sec^{k-2}xdx\\(k-1)I_k&=\sec^{k-2}x\tan x+(k-2)\int \sec^{k-2}xdx\\&I_k=\frac{1}{k-1}\sec^{k-2}x\tan x+\frac{(k-2)}{(k-1)}\int \sec^{k-2}xdx \end{align*}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solve each of the integrals in Exercises 39–74. Some integrals require trigonometric substitution, and some do not. Write your answers as algebraic functions whenever possible.

4-x2x2dx

Show that if x=tanu, then dx=sec2udu, in the following two ways: (a) by using implicit differentiation, thinking of uas a function of x, and (b) by thinking of xas a function of u.

True/False: Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.

(a) True or False: The substitution x = 2 sec u is a suitable choice for solving1x24dx.

(b) True or False: The substitution x = 2 sec u is a suitable choice for solving1x24dx.

(c) True or False: The substitution x = 2 tan u is a suitable choice for solving1x2+4dx.

(d) True or False: The substitution x = 2 sin u is a suitable choice for solvingx2+45/2dx

(e) True or False: Trigonometric substitution is a useful strategy for solving any integral that involves an expression of the form x2a2.

(f) True or False: Trigonometric substitution doesn’t solve an integral; rather, it helps you rewrite integrals as ones that are easier to solve by other methods.

(g) True or False: When using trigonometric substitution with x=asinu, we must consider the cases x>a and x<-a separately.

(h) True or False: When using trigonometric substitution with x=asecu, we must consider the cases x>a and x<-a separately.

Solve the integral:xexdx

Explain why, if x=asinu, then a2x2=acosu. Your explanation should include a discussion of domains and absolute values.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free