Evaluate each of the vector field line integrals in Exercises 29–36 over the indicated curves.

F(x,y,z)=2zi+lnxj+xzk, with C the curve parameterized by (t,lnt,t)for1te2.

Short Answer

Expert verified

The vector field line integral of the given function over the specified curve is Cf(x,y,z)ds1148.18i+578.175j+3.2453k.

Step by step solution

01

Step 1. Given Information

We have to evaluate the vector field line integrals in given exercises over the indicated curves.

F(x,y,z)=2zi+lnxj+xzk, with C the curve parameterized by (t,lnt,t)for1te2.

02

Step 2. The given function is F(x, y, z)=2zi+lnxj+xzk

So the line integral is

Cf(x,y,z)ds=abf(r(t)(x'(t))2+(y'(t))2+(z'(t))2dt

r(t)=(t,lnt,t)r'(t)=(1,1t,1)

Now finding f(r(t)

localid="1650995848859" f(r(t)=2ti+ln(lnt)j+t·tkf(r(t)=2ti+tj+t2k

03

Step 3. Now solving the ∫Cf(x,y,z)ds=∫abf(r(t)(x'(t))2+(y'(t))2+(z'(t))2dt

Cf(x,y,z)ds=1e22ti+tj+t2k(1)2+(1t)2+(1)2dtCf(x,y,z)ds=1e22ti+tj+t2k1+1t2+1dtCf(x,y,z)ds=1e22ti+tj+t2k2+1t2dtCf(x,y,z)ds=1e2(2ti+tj+t2k)2t2+1t2dtCf(x,y,z)ds=1e2(2ti+tj+t2k)1t2t2+1dtCf(x,y,z)ds=1e2(2i+j+tk)2t2+1dtCf(x,y,z)ds=1e222t2+1dti+1e22t2+1dtj+1e2t2t2+1dtk

04

Step 4. Now solving ∫Cf(x,y,z)ds=2∫1e22t2+1dti+∫1e22t2+1dtj+∫1e2t2t2+1dtk

Cf(x,y,z)ds=21e2(2t)2+(1)2dti+1e2(2t)2+(1)2dtj+1e2t2t2+1dtkCf(x,y,z)ds=21e2(1)2+(2t)2dti+1e2(1)2+(2t)2dtj+1e2t2t2+1dtkCf(x,y,z)ds=2I1i+I2j+I3kNowsolvingtheI1I1=1e2(1)2+(2t)2dtI1=122t(1)2+(2t)2+12(1)2loge2t+(1)2+(2t)21e2I1=122t1+2t2+12(1)2loge2t+1+2t21e2

05

Now putting the value.

I1=122e21+2(e2)2+12(1)2loge2e2+1+2(e2)2-122·11+2(1)2+12(1)2loge2·1+1+2(1)2I1=122e21+2e4+12·1loge2e2+1+2e4-1221+2·1+12·1loge2+1+2·1I1=12e21+2e4+12loge2e2+1+2e4-123+12loge2+3I1=12e21+2e4+12loge2e2+1+2e4-32+12loge2+3=I2

06

Step 6. Now solving the I3 

I3=1e2t2t2+1dtLet2t2+1=u4tdt=dutdt=14duI3=141e2udtI3=141e2u1/2dtI3=14u1/2+11/2+11e2I3=14u3/23/21e2I3=14·23u3/21e2I3=16(e2)3/2-(1)3/2I3=16e3-1

07

Step 7. Now putting the value of 

Cf(x,y,z)ds=2I1i+I2j+I3kCf(x,y,z)ds=212e21+2e4+12loge2e2+1+2e4-32+12loge2+3i+12e21+2e4+12loge2e2+1+2e4-32+12loge2+3j+16e3-1kCf(x,y,z)ds=2·12e21+2e4+2·12loge2e2+1+2e4-2·32+2·12loge2+3i+12e21+2e4+12loge2e2+1+2e4-32+12loge2+3j+16e3-1k

08

Step 8. Simplifying.

Cf(x,y,z)ds=2e21+2e4+loge2e2+1+2e4-6+loge2+3i+12e21+2e4+12loge2e2+1+2e4-32+12loge2+3j+16e3-1kCf(x,y,z)ds1.41×7.391+2×54.59+loge1.41×7.39+1+2×54.59-2.45+0.49i+0.71×7.391+2×54.59+0.5×loge1.41×7.39+1+2×54.59-1.21+0.5×0.49j+0.1720.09-1kCf(x,y,z)ds1.41×7.39×110.18+2.08-2.45+0.49i+0.71×7.39×110.18+0.5×2.08-1.21+0.5×0.49j+0.1720.09-1kCf(x,y,z)ds(1148.06+2.08-2.45+0.49)i+(578.10+1.04-1.21+0.245)j+0.17×19.09kCf(x,y,z)ds1148.18i+578.175j+3.2453k

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

True/False: Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.

(a) True or False: The result of integrating a vector field over a surface is a vector.

(b) True or False: The result of integrating a function over a surface is a scalar.

(c) True or False: For a region R in thexy-plane,dS=dA.

(d) True or False: In computing Sf(x,y,z)dS, the direction of the normal vector is irrelevant.

(e) True or False: If f (x, y, z) is defined on an open region containing a smooth surface S, then Sf(x,y,z)dSmeasures the flow through S in the positive z direction determined by f (x, y, z).

(f) True or False: If F(x, y, z) is defined on an open region containing a smooth surface S , then SF(x,y,z).ndSmeasures the flow through S in the direction of n determined by the field F(x, y, z).

(g) True or False: In computing SF(x,y,z).ndS,the direction of the normal vector is irrelevant.

(h) True or False: In computing SF(x,y,z).ndS,with n pointing in the correct direction, we could use a scalar multiple of n, since the length will cancel in the dSterm.

Find the work done by the vector field

F(x,y)=cosx2+4xy2i+2y-4x2yj

in moving an object around the unit circle, starting and ending at (1,0).

If curl F(x,y,z)·nis constantly equal to 1on a smooth surface Swith a smooth boundary curve C, then Stokes’ Theorem can reduce the integral for the surface area to a line integral. State this integral.

Q. True/False: Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.

(a) True or False: Stokes’ Theorem asserts that the flux of a vector field through a smooth surface with a smooth boundary is equal to the line integral of this field about the boundary of the surface.

(b) True or False: Stokes’ Theorem can be interpreted as a generalization of Green’s Theorem.

(c) True or False: Stokes’ Theorem applies only to conservative vector fields.

(d) True or False: Stokes’ Theorem is always used as a way to evaluate difficult surface integrals.

(e) True or False: Stokes’ Theorem can be interpreted as a generalization of the Fundamental Theorem of Line Integrals.

(f) True or False: If F(x, y ,z) is a conservative vector field, then Stokes’ Theorem and Theorem 14.12 together give an alternative proof of the Fundamental Theorem of Line Integrals for simple closed curves.

(g) True or False: Stokes’ Theorem can be interpreted as a generalization of the Fundamental Theorem of Calculus.

(h) True or False: Stokes’ Theorem can be used to evaluate surface area .

S is the portion of the saddle surface determined by z = x2 − y2 that lies above and/or below the annulus in the xy-plane determined by the circles with radii

32and2

and centered at the origin.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free