In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi , gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi , gal).

If exactly two predictor (x) variables are to be used to predict the city fuel consumption, which two variables should be chosen? Why?

Short Answer

Expert verified

The model with predictors HWY and WT are the best to predict the city fuel consumption.

Step by step solution

01

Given information

The table representing the predictor variables, P-value, \({R^2}\) , Adjusted \({R^2}\)and the regression equations are provided.

02

Discuss the measures stated in the table

The three measures stated in the table are:

  • P-value: to decide the significance of the model
  • \({R^2}:\)to indicate the accuracy of the model and the fitness of the regression model
  • Adjusted \({R^2}:\)to measure the accuracy of the model by evaluating the counts of independent variables
03

Identify the best model

From the table, the two variable model that has the smallest P-value (0.0000), t highest\({R^2}\)and adjusted\({R^2}\)values (0.942 and 0.935 respectively) correspond to the WT/HWY predictor variable.

This implies that the HWY and WT predictor models are the best to predict the city’s fuel consumption.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identifying a Model and\({R^2}\)Different samples are collected, and each sample consists of IQ scores of 25 statistics students. Let x represent the standard deviation of the 25 IQ scores in a sample, and let y represent the variance of the 25 IQ scores in a sample. What formula best describes the relationship between x and y? Which of the five models describes this relationship? What should be the value of\({R^2}\)?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CSI Statistics Police sometimes measure shoe prints at crime scenes so that they can learn something about criminals. Listed below are shoe print lengths, foot lengths, and heights of males (from Data Set 2 “Foot and Height” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between shoe print lengths and heights of males? Based on these results, does it appear that police can use a shoe print length to estimate the height of a male?

Shoe print(cm)

29.7

29.7

31.4

31.8

27.6

Foot length(cm)

25.7

25.4

27.9

26.7

25.1

Height (cm)

175.3

177.8

185.4

175.3

172.7

\({s_e}\)Notation Using Data Set 1 “Body Data” in Appendix B, if we let the predictor variable x represent heights of males and let the response variable y represent weights of males, the sample of 153 heights and weights results in\({s_e}\)= 16.27555 cm. In your own words, describe what that value of \({s_e}\)represents.

Super Bowl and\({R^2}\)Let x represent years coded as 1, 2, 3, . . . for years starting in 1980, and let y represent the numbers of points scored in each Super Bowl from 1980. Using the data from 1980 to the last Super Bowl at the time of this writing, we obtain the following values of\({R^2}\)for the different models: linear: 0.147; quadratic: 0.255; logarithmic: 0.176; exponential: 0.175; power: 0.203. Based on these results, which model is best? Is the best model a good model? What do the results suggest about predicting the number of points scored in a future Super Bowl game?

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Conclusion The linear correlation coefficient r is found to be 0.499, the P-value is 0.393, and the critical values for a 0.05 significance level are\( \pm 0.878\). What should you conclude?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free