Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, Stat Crunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.


Testing for Correlation Use the information provided in the display to determine the value of the linear correlation coefficient. Is there sufficient evidence to support a claim of a linear correlation between numbers of registered boats and numbers of manatee deaths from encounters with boats?

Short Answer

Expert verified

The linear correlation coefficient is 0.85014394.

There is sufficient evidence to support the claim that the variables “number of registered boats” and “number of manatee deaths from encounters with boats” are linearly related.

Step by step solution

01

Given information

Results are obtained for the linear relation between the variables “number of registered boats” and “number of manatee deaths” using StatCrunch.

02

Correlation coefficient

The linear correlation between the two variables is shown in the results obtained using StatCrunch and is equal to 0.85014394.

03

Significance of correlation

The researcher wants to test the claim that there is a linear correlation between the variables number of registered boats and the number of manatee deaths from encounters with boats.

Let\(\rho \)represent the linear correlation coefficient of the population.

The statistical hypothesis is given below:

\(\begin{array}{l}{H_0}:\rho = 0\\{H_1}:\rho \ne 0\end{array}\)

Here,

\(\begin{array}{l}r = 0.850\\n = 24\end{array}\)

The degrees of freedom (df) is given as follows:

\(\begin{array}{c}df = n - 2\\ = 24 - 2\\ = 22\end{array}\)

The two-tailed critical values of rat df = 22 and at a significance level of 0.05 are obtained as –404 and 0.404.

Since the given value of the linear correlation coefficient (0.850) lies beyond the upper critical value of 0.404, the null hypothesis is rejected.

Thus, there issufficient evidence to support the claim of a linear correlation between the numbers of registered boats and number of manatee deaths from encounters with boats.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi , gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi , gal).

If exactly two predictor (x) variables are to be used to predict the city fuel consumption, which two variables should be chosen? Why?

Confidence Intervals for a Regression Coefficients A confidence interval for the regression coefficient b1 is expressed

\(\begin{array}{l}{b_1} - E < {\beta _1} < {b_1} + E\\\end{array}\)

Where

\(E = {t_{\frac{\alpha }{2}}}{s_{{b_1}}}\)

The critical t score is found using n –(k+1) degrees of freedom, where k, n, and sb1 are described in Exercise 17. Using the sample data from Example 1, n = 153 and k = 2, so df = 150 and the critical t scores are \( \pm \)1.976 for a 95% confidence level. Use the sample data for Example 1, the Stat diskdisplay in Example 1 on page 513, and the Stat Crunchdisplay in Exercise 17 to construct 95% confidence interval estimates of \({\beta _1}\) (the coefficient for the variable representing height) and\({\beta _2}\) (the coefficient for the variable representing waist circumference). Does either confidence interval include 0, suggesting that the variable be eliminated from the regression equation?

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times)

Which of the following change if the two variables of enrollment and burglaries are switched: the value of r= 0.499, the P-value of 0.393, the critical values of\( \pm \)0.878?

\({s_e}\)Notation Using Data Set 1 “Body Data” in Appendix B, if we let the predictor variable x represent heights of males and let the response variable y represent weights of males, the sample of 153 heights and weights results in\({s_e}\)= 16.27555 cm. In your own words, describe what that value of \({s_e}\)represents.

In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi, gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi, gal).

A Honda Civic weighs 2740 lb, it has an engine displacement of 1.8 L, and its highway fuel consumption is 36 mi/gal. What is the best predicted value of the city fuel consumption? Is that predicted value likely to be a good estimate? Is that predicted value likely to be very accurate?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free