Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the foot lengths and heights to find the best predicted height of a male

who has a foot length of 28 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

Short Answer

Expert verified

The regression equation is\(\hat y = 125 + 1.73x\).

The best-predicted value is the mean height of 177 cm. It will not be helpful to the police in trying to obtain a description of the male.

Step by step solution

01

Given information

The given data provides the information of the shoe print (in cm) and the height (in cm), as follows.

02

State the equation for the regression linea

The formula for the estimated regression line is

\(y = {b_0} + {b_1}x\).

Here,

\({b_0}\)is the Y-intercept,

\({b_1}\)is the slope,

\(x\)is the explanatory variable, and

\(\hat y\)is the response variable (predicted value).

Let X denote the foot length (in cm) and Y denote the height (in cm) of the male.

03

Compute the slope and intercept

The calculations required to compute the slope and intercept are as follows.

The sample size is \(\left( n \right) = 5\).

The slope is computed as

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{5 \times 23209.27 - 130.8 \times 886.5}}{{5 \times 3426.96 - {{130.8}^2}}}\\ = 3.5226\end{array}\).

The intercept is computed as

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{886.5 \times 3426.96 - 130.8 \times 23209.27}}{{5 \times 3426.96 - {{130.8}^2}}}\\ = 85.15\end{array}\).

The estimated regression equation is

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 85.15 + 3.5226x\end{array}\).

04

Checking the model

Refer to exercise 18 of section 10-1 for the following result.

1) The scatter plot does not show an approximate linear relationship between the variables.

2) The P-value is 0.085.

As the P-value is greater than the level of significance (0.05), the null hypothesis is failed to be rejected.

Therefore, the correlation is not significant.

Referring to figure 10-5, the criteria for a good regression model are not satisfied.

The best-predicted value of a variable is simply its sample mean.

05

Compute the prediction 

The best-predicted height of a male who has a foot length of 28 cm is obtained as the mean of the sample responses.

The sample mean is computed as

\(\begin{array}{c}\bar y = \frac{{\sum\limits_{i = }^n {{y_i}} }}{n}\\ = \frac{{\left( {175.3 + 177.8 + ... + 172.7} \right)}}{5}\\ = 177.3\end{array}\).

Therefore, the best-predicted height of the male who has a foot length of 28 cm will be 177 cm. As the best-predicted value is the mean height (177 cm), it will not help the police to describe the male.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Hypothesis Test The mean sunspot number for the past three centuries is 49.7. Use a 0.05 significance level to test the claim that the eight listed sunspot numbers are from a population with a mean equal to 49.7.

Cigarette Tar and Nicotine The table below lists measured amounts (mg) of tar, carbonmonoxide (CO), and nicotine in king size cigarettes of different brands (from Data Set 13“Cigarette Contents” in Appendix B).

a. Is there is sufficient evidence to support a claim of a linear correlation between tar and nicotine?

b. What percentage of the variation in nicotine can be explained by the linear correlation between nicotine and tar?

c. Letting yrepresent the amount of nicotine and letting xrepresent the amount of tar, identify the regression equation.

d. The Raleigh brand king size cigarette is not included in the table, and it has 23 mg of tar. What is the best predicted amount of nicotine? How does the predicted amount compare to the actual amount of 1.3 mg of nicotine?

Tar

25

27

20

24

20

20

21

24

CO

18

16

16

16

16

16

14

17

Nicotine

1.5

1.7

1.1

1.6

1.1

1.0

1.2

1.4

Ages of Moviegoers Based on the data from Cumulative Review Exercise 7, assume that ages of moviegoers are normally distributed with a mean of 35 years and a standard deviation of 20 years.

a. What is the percentage of moviegoers who are younger than 30 years of age?

b. Find\({P_{25}}\), which is the 25th percentile.

c. Find the probability that a simple random sample of 25 moviegoers has a mean age that is less than 30 years.

d. Find the probability that for a simple random sample of 25 moviegoers, each of the moviegoers is younger than 30 years of age. For a particular movie and showtime, why might it not be unusual to have 25 moviegoers all under the age of 30?

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Conclusion The linear correlation coefficient r is found to be 0.499, the P-value is 0.393, and the critical values for a 0.05 significance level are\( \pm 0.878\). What should you conclude?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CSI Statistics Use the paired foot length and height data from the preceding exercise. Is there sufficient evidence to conclude that there is a linear correlation between foot lengths and heights of males? Based on these results, does it appear that police can use foot length to estimate the height of a male?

Shoe print(cm)

29.7

29.7

31.4

31.8

27.6

Foot length(cm)

25.7

25.4

27.9

26.7

25.1

Height (cm)

175.3

177.8

185.4

175.3

172.7

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free